

tt: logical tools for logic

Welcome to the documentation site for tt!

Warning

tt is heavily tested and fully usable, but is still pre-1.0/stable software with no guarantees of avoiding breaking API changes until hitting version 1.0.

[image: tt's PyPI page] [https://pypi.python.org/pypi/ttable] [image: tt runs on Python 3.6, 3.7, and 3.8] [https://pypi.python.org/pypi/ttable] [image: tt documentation site] [https://tt.brianwel.ch/en/latest/] [image: Linux build on Travis CI] [https://travis-ci.org/welchbj/tt] [image: Windows build on AppVeyor] [https://ci.appveyor.com/project/welchbj/tt]

Synopsis

tt (truth table) is a library aiming to provide a Pythonic toolkit for working with Boolean expressions and truth tables. Please see the project site [https://tt.brianwel.ch] for guides and documentation, or check out bool.tools [http://www.bool.tools] for a simple web application powered by this library.

Installation

tt is tested on CPython 3.6, 3.7, and 3.8. You can get the latest release from PyPI with:

pip install ttable

Features

Parse expressions:

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A impl not (B nand C)')
>>> b.tokens
['A', 'impl', 'not', '(', 'B', 'nand', 'C', ')']
>>> print(b.tree)
impl
`----A
`----not
 `----nand
 `----B
 `----C

Evaluate expressions:

>>> b = BooleanExpression('(A /\ B) -> (C \/ D)')
>>> b.evaluate(A=1, B=1, C=0, D=0)
False
>>> b.evaluate(A=1, B=1, C=1, D=0)
True

Interact with expression structure:

>>> b = BooleanExpression('(A and ~B and C) or (~C and D) or E')
>>> b.is_dnf
True
>>> for clause in b.iter_dnf_clauses():
... print(clause)
...
A and ~B and C
~C and D
E

Apply expression transformations:

>>> from tt import to_primitives, to_cnf
>>> to_primitives('A xor B')
<BooleanExpression "(A and not B) or (not A and B)">
>>> to_cnf('(A nand B) impl (C or D)')
<BooleanExpression "(A or C or D) and (B or C or D)">

Or create your own:

>>> from tt import tt_compose, apply_de_morgans, coalesce_negations, twice
>>> b = BooleanExpression('not (not (A or B))')
>>> f = tt_compose(apply_de_morgans, twice)
>>> f(b)
<BooleanExpression "not not A or not not B">
>>> g = tt_compose(f, coalesce_negations)
>>> g(b)
<BooleanExpression "A or B">

Exhaust SAT solutions:

>>> b = BooleanExpression('~(A or B) xor C')
>>> for sat_solution in b.sat_all():
... print(sat_solution)
...
A=0, B=1, C=1
A=1, B=0, C=1
A=1, B=1, C=1
A=0, B=0, C=0

Find just a few:

>>> with b.constrain(A=1):
... for sat_solution in b.sat_all():
... print(sat_solution)
...
A=1, B=0, C=1
A=1, B=1, C=1

Or just one:

>>> b.sat_one()
<BooleanValues [A=0, B=1, C=1]>

Build truth tables:

>>> from tt import TruthTable
>>> t = TruthTable('A iff B')
>>> print(t)
+---+---+---+
| A | B | |
+---+---+---+
| 0 | 0 | 1 |
+---+---+---+
| 0 | 1 | 0 |
+---+---+---+
| 1 | 0 | 0 |
+---+---+---+
| 1 | 1 | 1 |
+---+---+---+

And much more [https://tt.brianwel.ch/en/stable/user_guide.html]!

License

tt uses the MIT License [https://opensource.org/licenses/MIT].

Want to learn more?

If you’re just getting started and looking for tutorial-style documentation, head on over to the User Guide. If you would prefer a comprehensive view of this library’s functionality, check out the API docs:

	cli

	definitions

	errors

	expressions

	satisfiability

	tables

	transformations

	trees

User Guide

Exploring the topics listed below should give you an idea of how to use the tools provided in this library. If anything remains unclear, please feel free to open an issue on GitHub [https://github.com/welchbj/tt/issues/new] or reach out to the author.

	Expression basics
	Creating an expression object

	Evaluating expressions

	Handling malformed expressions

	Table basics
	Creating a table object from an expression

	Creating a table object from values

	Accessing values from a table

	Partially filling tables

	Logical equivalence

The user guide is a work in progress, with more to come soon!

Expression basics

At tt’s core is the concept of the Boolean expression, encapsulated in this library with the BooleanExpression class. Let’s take look at what we can do with expressions.

Creating an expression object

The top-level class for interacting with boolean expressions in tt is, fittingly named, BooleanExpression. Let’s start by importing it:

>>> from tt import BooleanExpression

This class accepts boolean expressions as strings and provides the interface for parsing and tokenizing string expressions into a sequence of tokens and symbols, as we see here:

>>> b = BooleanExpression('(A nand B) or (C and D)')
>>> b.tokens
['(', 'A', 'nand', 'B', ')', 'or', '(', 'C', 'and', 'D', ')']
>>> b.symbols
['A', 'B', 'C', 'D']

We can also always retrieve the original string we passed in via the raw_expr attribute:

>>> b.raw_expr
'(A nand B) or (C and D)'

During initialization, the BooleanExpression also does some work behind the scenes to build a basic understanding of the expression’s structure. It re-orders the tokens into postfix order, and uses this representation to build a ExpressionTreeNode. We can see this with:

>>> b.postfix_tokens
['A', 'B', 'nand', 'C', 'D', 'and', 'or']
>>> print(b.tree)
or
`----nand
| `----A
| `----B
`----and
 `----C
 `----D

This expression tree represents tt’s understanding of the structure of your expression. If you are receiving an unexpected error for a more complicated expression, inspecting the tree attribute on the BooleanExpression instance can be a good starting point for debugging the issue.

Evaluating expressions

Looking at expression symbols and tokens is nice, but we need some real functionality for our expressions; a natural starting point is the ability to evaluate expressions. A BooleanExpression object provides an interface to this evaluation functionality; use it like this:

>>> b.evaluate(A=True, B=False, C=True, D=False)
True
>>> b.evaluate(A=1, B=0, C=1, D=0)
True

Notice that we can use 0 or False to represent low values and 1 or True to represent high values. tt makes sure that only valid Boolean-esque values are accepted for evaluation. For example, if we tried something like:

>>> b.evaluate(A=1, B='not a Boolean value', C=0, D=0)
Traceback (most recent call last):
 ...
tt.errors.evaluation.InvalidBooleanValueError: "not a Boolean value" passed as value for "B" is not a valid Boolean value

or if we didn’t include a value for each of the symbols:

>>> b.evaluate(A=1, B=0, C=0)
Traceback (most recent call last):
 ...
tt.errors.symbols.MissingSymbolError: Did not receive value for the following symbols: "D"

These exceptions can be nice if you aren’t sure about your input, but if you think this safety is just adding overhead for you, there’s a way to skip those extra checks:

>>> b.evaluate_unchecked(A=0, B=0, C=1, D=0)
True

Handling malformed expressions

So far, we’ve only seen one example of a BooleanExpression instance, and we passed a valid expression string to it. What happens when we pass in a malformed expression? And what does tt even consider to be a malformed expression?

While there is no explicit grammar for expressions in tt, using your best judgement will work most of the time. Most well-known Boolean expression operators are available in plain-English and symbolic form. You can see the list of available operators like so:

>>> from tt import OPERATOR_MAPPING
>>> print(', '.join(sorted(OPERATOR_MAPPING.keys())))
!, &, &&, ->, /\, <->, AND, IFF, IMPL, NAND, NOR, NOT, NXOR, OR, XNOR, XOR, \/, and, iff, impl, nand, nor, not, nxor, or, xnor, xor, |, ||, ~

Another possible source of errors in your expressions will be invalid symbol names. Due to some functionality based on accessing symbol names from namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]-like objects, symbol names must meet the following criteria:

	Must be a valid Python identifiers [https://docs.python.org/3/reference/lexical_analysis.html#identifiers].

	Cannot be a Python keyword [https://docs.python.org/3/reference/lexical_analysis.html#keywords].

	Cannot begin with an underscore

An exception will be raised if a symbol name in your expression does not meet the above criteria. Fortunately, tt provides a way for us to check if our symbols are valid. Let’s take a look:

>>> from tt import is_valid_identifier
>>> is_valid_identifier('False')
False
>>> is_valid_identifier('_bad')
False
>>> is_valid_identifier('not$good')
False
>>> is_valid_identifier('a_good_symbol_name')
True
>>> b = BooleanExpression('_A or B')
Traceback (most recent call last):
 ...
tt.errors.grammar.InvalidIdentifierError: Invalid operand name "_A"

As we saw in the above example, we caused an error from the tt.errors.grammar module. If you play around with invalid expressions, you’ll notice that all of these errors come from that module; that’s because errors in this logical group are all descendants of GrammarError. This is the type of error that lexical expression errors will fall under:

>>> from tt import GrammarError
>>> invalid_expressions = ['A xor or B', 'A or ((B nand C)', 'A or B B']
>>> for expr in invalid_expressions:
... try:
... b = BooleanExpression(expr)
... except Exception as e:
... print(type(e))
... print(isinstance(e, GrammarError))
...
<class 'tt.errors.grammar.ExpressionOrderError'>
True
<class 'tt.errors.grammar.UnbalancedParenError'>
True
<class 'tt.errors.grammar.ExpressionOrderError'>
True

GrammarError is a unique type of exception in tt, as it provides attributes for accessing the specific position in the expression string that caused an error. This is best illustrated with an example:

>>> try:
... b = BooleanExpression('A or or B')
... except GrammarError as e:
... print("Here's what happened:")
... print(e.message)
... print("Here's where it happened:")
... print(e.expr_str)
... print(' '*e.error_pos + '^')
...
Here's what happened:
Unexpected binary operator "or"
Here's where it happened:
A or or B
 ^

Table basics

Truth tables are a nice way of showing the behavior of an expression for each permutation of possible inputs and are nice tool to pair with expressions. Let’s examine the interface provided by tt for working with truth tables.

Creating a table object from an expression

Surprisingly, the top-level class for dealing with truth tables in tt is called TruthTable. Let’s begin by importing it:

>>> from tt import TruthTable

There are a few ways we can fill up a truth table in tt. One of them is to pass in an expression, either as an already-created BooleanExpression object or as a string:

>>> t = TruthTable('A xor B')
>>> print(t)
+---+---+---+
| A | B | |
+---+---+---+
| 0 | 0 | 0 |
+---+---+---+
| 0 | 1 | 1 |
+---+---+---+
| 1 | 0 | 1 |
+---+---+---+
| 1 | 1 | 0 |
+---+---+---+

As we we in the above example, printing tables produces a nicely-formatted text table. Tables will scale to fit the size of the symbol names, too:

>>> t = TruthTable('operand_1 and operand_2')
>>> print(t)
+-----------+-----------+---+
| operand_1 | operand_2 | |
+-----------+-----------+---+
| 0 | 0 | 0 |
+-----------+-----------+---+
| 0 | 1 | 0 |
+-----------+-----------+---+
| 1 | 0 | 0 |
+-----------+-----------+---+
| 1 | 1 | 1 |
+-----------+-----------+---+

By default, tt will order the symbols in the top row of of the table to match the order of their appearance in the original expression; however, you can impose your own order, too:

>>> t = TruthTable('A xor B', ordering=['B', 'A'])
>>> print(t)
+---+---+---+
| B | A | |
+---+---+---+
| 0 | 0 | 0 |
+---+---+---+
| 0 | 1 | 1 |
+---+---+---+
| 1 | 0 | 1 |
+---+---+---+
| 1 | 1 | 0 |
+---+---+---+

Creating a table object from values

The tables we looked at above were populated by evaluating the expression for each combination of input values, but let’s say that you already have the values you want in your truth table. You’d populate your table like this:

>>> t = TruthTable(from_values='00x1')
>>> print(t)
+---+---+---+
| A | B | |
+---+---+---+
| 0 | 0 | 0 |
+---+---+---+
| 0 | 1 | 0 |
+---+---+---+
| 1 | 0 | x |
+---+---+---+
| 1 | 1 | 1 |
+---+---+---+

Notice that populating tables like this allows for don’t cares (indicated by 'x') to be present in your table. Additionally, we can see that symbol names were automatically generated for us. That’s nice sometimes, but what if we want to specify them ourselves? We return to the ordering keyword argument:

>>> t = TruthTable(from_values='1x01', ordering=['op1', 'op2'])
>>> print(t)
+-----+-----+---+
| op1 | op2 | |
+-----+-----+---+
| 0 | 0 | 1 |
+-----+-----+---+
| 0 | 1 | x |
+-----+-----+---+
| 1 | 0 | 0 |
+-----+-----+---+
| 1 | 1 | 1 |
+-----+-----+---+

Accessing values from a table

So far, we’ve only been able to examine the results stored in our tables by printing them. This is nice for looking at an end result, but we need programmatic methods of accessing the values in our tables. There’s a few ways to do this in tt; one such example is the results attribute present on TruthTable objects, which stores all results in the table:

>>> t = TruthTable('!A && B')
>>> t.results
[False, True, False, False]

Results in the table are also available by indexing the table:

>>> t[0], t[1], t[2], t[3]
(False, True, False, False)

Accessing results by index is also an intuitive time to use binary literals:

>>> t[0b00], t[0b01], t[0b10], t[0b11]
(False, True, False, False)

Tables in tt are also iterable. There are a couple of important items to note. First, iterating through the entries in a table will skip over the entries that would have appeared as None in the results list. Second, in addition to the result, each iteration through the table yields a namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]-like object representing the inputs associated with that result. Let’s take a look:

>>> for inputs, result in t:
... inputs.A, inputs.B
... str(inputs), result
...
(False, False)
('A=0, B=0', False)
(False, True)
('A=0, B=1', True)
(True, False)
('A=1, B=0', False)
(True, True)
('A=1, B=1', False)

Partially filling tables

Up to this point, we’ve only taken a look at tables with all of their results filled in, but we don’t have to completely fill up our tables to start working with them. Here’s an example of iteratively filling a table:

>>> t = TruthTable('A nor B', fill_all=False)
>>> t.is_full
False
>>> print(t)
Empty!
>>> t.fill(A=0)
>>> t.is_full
False
>>> print(t)
+---+---+---+
| A | B | |
+---+---+---+
| 0 | 0 | 1 |
+---+---+---+
| 0 | 1 | 0 |
+---+---+---+
>>> t.fill()
>>> t.is_full
True
>>> print(t)
+---+---+---+
| A | B | |
+---+---+---+
| 0 | 0 | 1 |
+---+---+---+
| 0 | 1 | 0 |
+---+---+---+
| 1 | 0 | 0 |
+---+---+---+
| 1 | 1 | 0 |
+---+---+---+

Empty slots in the table will be represented with a corresponding None entry for their result:

>>> t = TruthTable('A or B', fill_all=False)
>>> t.results
[None, None, None, None]
>>> t.fill(B=0)
>>> t.results
[False, None, True, None]

Make sure not to try to keep filling an already-full table, though:

>>> t = TruthTable(from_values='0110')
>>> t.is_full
True
>>> t.fill()
Traceback (most recent call last):
 ...
tt.errors.state.AlreadyFullTableError: Cannot fill an already-full table

Logical equivalence

Another neat feature provided by tt’s tables is the checking of logical equivalence:

>>> t1 = TruthTable('A xor B')
>>> t2 = TruthTable(from_values='0110')
>>> t1.equivalent_to(t2)
True
>>> t1.equivalent_to('C xor D')
True

Note that this equivalence comparison looks only at the result values of the tables and doesn’t examine at the symbols of either table.

Next, let’s examine how don’t cares function within tt’s concept of logical equivalence. Don’t cares in the calling table will be considered to equal to any value in the comparison table, but any explicity value in the calling table must be matched in the comparison table to be considered equal.

In this sense, a fully-specified table (i.e., one without any don’t cares) will never be logically equivalent to one which contains don’t cares, but the converse may be true. Let’s see an example:

>>> t1 = TruthTable('C nand D')
>>> t2 = TruthTable(from_values='xx10')
>>> t1.equivalent_to(t2)
False
>>> t2.equivalent_to(t1)
True

Release Notes

Check below for new features added in each release. Please note that release notes were not recorded before version 0.5.0.

0.6.x

Features in the 0.6.x series of releases are focused on expanding functionality to include expression satisfiability and transformations.

0.6.4

	Introduce the transformations.utils module, including the RepeatableAction, ComposedTransformation, AbstractTransformationModifier classes; the repeat, twice, and forever factory classes; and the tt_compose utility function

	Publicly expose the ensure_bexpr in the transformations.utils module

	Drop support for all Python versions except 3.6, 3.7, and 3.8

0.6.3

	Add non_negated_symbol_set and negated_symbol_set to ExpressionTreeNode

	Add apply_idempotent_law, apply_identity_law, and apply_inverse_law transformations to ExpressionTreeNode

	Add apply_idempotent_law, apply_identity_law, and apply_inverse_law top-level transformation functions

	Add functionality to the coalesce_negations transformation to apply negations on constant operands

	Update to_cnf to incorporate new transformations, leading to more condense CNF transformed expressions

0.6.2

	Remove class BooleanExpressionTree in favor of working exclusively with instances of ExpressionTreeNode

	Add AlreadyConstrainedSymbolError

	Add sat_all to picosat interface

	Add constrain, sat_one, and sat_all to BooleanExpression

	Move the implementation logic of the to_cnf transformation to the to_cnf method of the ExpressionTreeNode class

0.6.1

	Add iff (iff, ->) and implies (impl, <->) Boolean operators

	Add is_cnf and is_dnf attributes to BooleanExpression

	Add functionality to initialize BooleanExpression objects from instances of ExpressionTreeNode or BooleanExpressionTree

	Update __str__ and __repr__ for BooleanExpression

	Add is_really_unary attribute to ExpressionTreeNode

	Add iter_clauses, iter_cnf_clauses, and iter_dnf_clauses to ExpressionTreeNode

	Add iter_clauses, iter_cnf_clauses, and iter_dnf_clauses to BooleanExpression

	Add RequiresNormalFormError

	Add attributes default_symbol_str and default_plain_english_str to BooleanOperator, in place of removed name attribute

	Add to_primitives, coalesce_negations, distribute_ands, distribute_ors, and apply_de_morgans to ExpressionTreeNode

	Introduce high-level transformations interface, including transformation functions to_primitives, coalesce_negations, distribute_ands, distribute_ors, to_cnf, and apply_de_morgans

	Add BINARY_OPERATORS and NON_PRIMITIVE_OPERATORS sets to definitions module

	Add __eq__ and __ne__ implementations for BooleanExpression and derivatives of ExpressionTreeNode

0.6.0

	Add is_valid_identifier helper method for checking if symbol names are valid

	Add checking of valid symbol names to BooleanExpression and TruthTable initalization logic, with corresponding new exception type InvalidIdentifierError

	Add boolean_variables_factory helper for generating more intuitive collections of symbol inputs

	Update __iter__ in TruthTable to yield inputs as a namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]-like object rather than a plain tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Re-organize User Guide into different sections instead of one long page

	Remove PyPy support, due to addition of C-extensions

	Add OS X builds to Travis

	Include both 32-bit and 64-bit builds on AppVeyor

	Add initial wrapper around PicoSAT [http://fmv.jku.at/picosat/] library for future satisfiability interface; namely, the sat_one method

	Add automated deployment to PyPI on tagged commits from CI services

0.5.x

Features in the 0.5.x series of releases were focused on expanding the top-level interface and improving optimizations under the hood. See below for specific features and fixes.

0.5.1

	Add from_values option to the TruthTable initializer, allowing for table creation directly from values

	Add ability to store don’t cares in a TruthTable

	Add equivalent_to method to TruthTable to check for equivalence of sources of truth

	Convert generate_symbols and input_combos to be static methods of the TruthTable class

	Add is_full to TruthTable

	Add __iter__ and __getitem__ functionality to TruthTable

	Add nice-looking __str__ to BooleanExpression

	Add new exception types: AlreadyFullTableError, ConflictingArgumentsError, and RequiredArgumentError

	Re-organize exception hierarchy so each group of exceptions extends from the same base class

	Re-organize the test file structure into more-focused files

	Add User Guide, acting as tutorial-style documentation

	Remove CLI example from the README

	Update documentation color palette

0.5.0

	Added the Release Notes section to the project’s documentation (how fitting for this page)

	Publically exposed the input_combos method in the TruthTable class

	Added test coverage for the CPython 3.6, PyPy, and PyPy3 runtimes

	Migrated all documentation to from Napoleon [http://www.sphinx-doc.org/en/stable/ext/napoleon.html] docstrings to standard Sphinx [http://www.sphinx-doc.org/en/stable/index.html] docstrings

	Added doctest [https://docs.python.org/3/library/doctest.html] tests to the documentation

	Added type-checking to the BooleanExpression class’s initialization

	Fixed a bug in the handling of empty expressions in the CLI

pre-0.5

Unfortunately, release notes were not kept before the 0.5.0 release.

Development

If you’d like to help out with the development of tt, we’d love to have you. Below are some helpful tips for working on this library. Feel free to reach out with any questions about getting involved in this project.

Managing with ttasks.py

tt ships with a script ttasks.py (tt + tasks = ttasks) in the project’s top-level directory, used to manage common project tasks such as running tests, building the docs, and serving the docs via a live-reload server. You will see this script referenced below.

Dependencies

All development requirements for tt are stored in the dev-requirements.txt file in the project’s top-level directory. You can install all of these dependencies with:

pip install -r dev-requirements.txt

Testing

Testing is done with Python’s unittest [https://docs.python.org/3/library/unittest.html] and doctest [https://docs.python.org/3/library/doctest.html] modules. All tests can be run using the ttasks.py script:

python ttasks.py test

Note that while doc tests are used, they are mainly to make sure the documentation examples are valid. The true behavior of the library and its public contract are enforced through the unit tests.

Local cross-Python version testing is achieved through tox [https://tox.readthedocs.org/en/latest/]. To run changes against the reference and style tests, simply invoke tox . from the top-level directory of the project; tox will run the unit tests against the compatible CPython runtimes. Additionally, the source is run through the Flake8 [http://flake8.pycqa.org/en/latest/] linter. Similar configurations are used on AppVeyor [https://ci.appveyor.com/project/welchbj/tt] (for Windows builds) and Travis CI [https://travis-ci.org/welchbj/tt/]. (for Mac and Linux builds).

Coding Style

tt aims to be strictly PEP8 [https://www.python.org/dev/peps/pep-0008/] compliant, enforcing this compliance via Flake8 [http://flake8.pycqa.org/en/latest/]. This project also includes an editorconfig [http://editorconfig.org/] file to help with formatting issues.

Documentation

To build the docs from source, run the following:

python ttasks.py build-docs

If you’re going to be working for a little bit, it’s usually more convenient to boot up a live-reload server that will re-build the docs on any source file change. To run one on port 5000 of your machine, run:

python ttasks.py serve-docs

Building C-extensions

tt contains some C-extensions that need to be built before the library is fully usable. They can be built and installed in a development environment by running:

python setup.py build
python setup.py develop

from the project’s top-level directory. There are some dependencies required for compiling these extensions, which can be a little difficult to get up and running on Windows. Depending on what CPython version you are targeting, you may need to install several different compilers. The following list contains information for all entries corresponding to Python versions that are either currently or were once supported by this project:

	Microsoft Visual C++ 9.0 [http://aka.ms/vcpython27] (for Python 2.7)

	Microsoft Visual C++ 10.0 [http://www.microsoft.com/download/details.aspx?id=8279] (for Python 3.3 and 3.4)

	Microsoft Visual C++ 14.0 [https://wiki.python.org/moin/WindowsCompilers#Microsoft_Visual_C.2B-.2B-_14.2_standalone:_Build_Tools_for_Visual_Studio_2019_.28x86.2C_x64.2C_ARM.2C_ARM64.29] (for Python 3.5, 3.6, 3.7, and 3.8)

For reference, check out this comprehensive list of Windows compilers [https://wiki.python.org/moin/WindowsCompilers] necessary for building Python and C-extensions. You may have some trouble installing the 7.1 SDK (which contains Visual C++ 10.0). This stackoverflow answer [http://stackoverflow.com/a/32534158/2225145] provides some possible solutions.

Releases

Work for each release is done in a branch off of develop following the naming convention v{major}.{minor}.{micro}. When work for a version is complete, its branch is merged back into develop, which is subsequently merged into master. The master branch is then tagged with the release version number, following the scheme {major}.{minor}.{micro}.

Wheels for Windows environments are provided for the library’s users on PyPI. To download the built wheels from the latest build on AppVeyor, make sure you have the APPVEYOR_TOKEN environment variable set and run:

python ttasks.py pull-latest-win-wheels

Additionally, when packaging for a release, make sure to include a source bundle:

python setup.py sdist

Now, all of our wheels and the source tarball should be in the dist folder in the top-level directory of the project. You can upload these files to PyPI with:

twine upload dist/*

Prior Art

There are some great projects operating in the same problem space as tt and might be worth a look. Many of tt’s design and feature choices were inspired by the libraries listed on this page. If you think that your library should be listed here, please let me know or submit a PR.

General purpose EDA/Boolean logic

	boolean.py [https://github.com/bastikr/boolean.py]

	PyEDA [https://github.com/cjdrake/pyeda]

	LogicNG [https://github.com/logic-ng/LogicNG] (Java)

	BoolExpr [https://github.com/cjdrake/boolexpr] (C++)

	EvalEx [https://github.com/uklimaschewski/EvalEx] (Java)

Satisfiability

	PyEDA [https://github.com/cjdrake/pyeda]

	pycosat [https://github.com/ContinuumIO/pycosat]

	SATisPy [https://github.com/netom/satispy/]

Special Thanks

A lot of free services and open source libraries have helped this project become possible. This page aims to give credit where its due; if you were left out, I’m sorry! Please let me know!

Contributors

Thank you to the following people who generously contributed their time and brainpower towards writing code that was merged into the library.

	Thomas Applencourt [https://github.com/TApplencourt]

	Florian Kromer [https://github.com/fkromer]

Services

Thank you to the free hosting provided by these services!

	GitHub [https://github.com/]

	Travis CI [https://travis-ci.org/]

	AppVeyor [https://www.appveyor.com/]

	Read the Docs [https://readthedocs.org/]

Design Resources

Thank you to Matthew Beckler, who designed the logic gate SVGs [https://www.mbeckler.org/inkscape/drawings/] present in tt’s logo.

Third Party Libraries Shipped with tt

Thank you to the developers of the following third party libraries that are wrapped in and shipped with tt. Your hard work drives some of the most powerful functionality of tt.

	PicoSAT [http://fmv.jku.at/picosat/]

Inspiration

Thanks goes to the developers of the PyEDA [https://github.com/cjdrake/pyeda] and pycosat [https://github.com/ContinuumIO/pycosat] libraries, whose interface and design are inspirations behind a lot of the functionality packed in tt.

Open Source Projects & Libraries

tt relies on some well-written and well-documented projects and libraries for its development, listed below. Thank you!

	Alabaster [http://alabaster.readthedocs.io/en/latest/]

	Babel [http://babel.pocoo.org/en/latest/]

	Colorama [https://github.com/tartley/colorama]

	Docutils [http://docutils.sourceforge.net/]

	Flake8 [http://flake8.pycqa.org/en/latest/]

	imagesize [https://github.com/shibukawa/imagesize_py]

	Jinja2 [http://jinja.pocoo.org/docs/dev/]

	MarkupSafe [http://www.pocoo.org/projects/markupsafe/]

	McCabe [https://github.com/pycqa/mccabe]

	pep8 [http://pep8.readthedocs.io/]

	pluggy [https://github.com/pytest-dev/pluggy]

	py [https://github.com/pytest-dev/py]

	pyenv [https://github.com/pyenv/pyenv]

	pyflakes [https://github.com/PyCQA/pyflakes]

	Pygments [http://pygments.org/]

	Python [https://www.python.org/]

	pytz [https://pypi.python.org/pypi/pytz/]

	Requests [http://docs.python-requests.org/en/master/]

	six [https://pythonhosted.org/six/]

	snowballstemmer [https://github.com/shibukawa/snowball_py]

	Sphinx [http://www.sphinx-doc.org/en/latest/]

	tox [https://tox.readthedocs.io/en/latest/]

	twine [https://github.com/pypa/twine]

	virtualenv [https://virtualenv.pypa.io/en/stable/]

Author

tt is written by Brian Welch. If you’d like to discuss anything about this library, Python, or software engineering in general, please feel free to reach out via one of the below channels.

	Personal website [https://brianwel.ch/]

	Github [https://github.com/welchbj/]

cli

tt’s command-line interface.

cli.core module

Core command-line interface for tt.

	
tt.cli.core.get_parsed_args(args=None)

	Get the parsed command line arguments.

	Parameters

	args (List[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The command-line args to parse; if omitted,
sys.argv [https://docs.python.org/3/library/sys.html#sys.argv] will be used.

	Returns

	The Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace] object holding
the parsed args.

	Return type

	argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]

	
tt.cli.core.main(args=None)

	The main routine to run the tt command-line interface.

	Parameters

	args (List[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The command-line arguments.

	Returns

	The exit code of the program.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

cli.utils module

Utilities for the tt command-line interface.

	
tt.cli.utils.print_err(*args, **kwargs)

	A thin wrapper around print, explicitly printing to stderr.

	
tt.cli.utils.print_info(*args, **kwargs)

	A thin wrapper around print, explicitly printing to stdout.

definitions

Definitions for tt’s expression grammar, operands, and operators.

definitions.grammar module

Definitions related to expression grammar.

	
tt.definitions.grammar.CONSTANT_VALUES = {'0', '1'}

	Set of tokens that act as constant values in expressions.

	Type

	Set[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
tt.definitions.grammar.DELIMITERS = {' ', '(', ')'}

	Set of tokens that act as delimiters in expressions.

	Type

	Set[str [https://docs.python.org/3/library/stdtypes.html#str]]

definitions.operands module

Definitions related to operands.

	
tt.definitions.operands.BOOLEAN_VALUES = {0, 1}

	Set of truthy values valid to submit for evaluation.

	Type

	Set[int [https://docs.python.org/3/library/functions.html#int], bool [https://docs.python.org/3/library/functions.html#bool]]

	
tt.definitions.operands.DONT_CARE_VALUE = 'x'

	The don’t care string identifier.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
tt.definitions.operands.boolean_variables_factory(symbols)

	Returns a class for namedtuple-like objects for holding boolean values.

	Parameters

	symbols (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of the symbol names for which instances of this
class will hold an entry.

	Returns

	An object where the passed symbols can be accessed as
attributes.

	Return type

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]-like object

This functionality is best demonstrated with an example:

>>> from tt import boolean_variables_factory
>>> factory = boolean_variables_factory(['op1', 'op2', 'op3'])
>>> instance = factory(op1=True, op2=False, op3=False)
>>> instance.op1
True
>>> instance.op2
False
>>> print(instance)
op1=1, op2=0, op3=0
>>> instance = factory(op1=0, op2=0, op3=1)
>>> instance.op3
1
>>> print(instance)
op1=0, op2=0, op3=1

It should be noted that this function is used internally within
functionality where the validity of inputs is already checked. As such,
this class won’t enforce the Boolean-ness of input values:

>>> factory = boolean_variables_factory(['A', 'B'])
>>> instance = factory(A=-1, B='value')
>>> print(instance)
A=-1, B=value

Instances produced from the generated factory are descendants of
namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple] generated classes; some
of the inherited attributes may be useful:

>>> instance = factory(A=True, B=False)
>>> instance._fields
('A', 'B')
>>> dict(instance._asdict())
{'A': True, 'B': False}

	
tt.definitions.operands.is_valid_identifier(identifier_name)

	Returns whether the string is a valid symbol identifier.

Valid identifiers are those that follow Python variable naming conventions,
are not Python keywords, and do not begin with an underscore.

	Parameters

	identifier_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string to test.

	Returns

	True if the passed string is valid identifier, otherwise False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	
	InvalidArgumentTypeError – If identifier_name is not a string.

	InvalidArgumentValueError – If identifier_name is an empty
string.

As an example:

>>> from tt import is_valid_identifier
>>> is_valid_identifier('$var')
False
>>> is_valid_identifier('va#r')
False
>>> is_valid_identifier('for')
False
>>> is_valid_identifier('False')
False
>>> is_valid_identifier('var')
True
>>> is_valid_identifier('')
Traceback (most recent call last):
 ...
tt.errors.arguments.InvalidArgumentValueError: identifier_name cannot be empty
>>> is_valid_identifier(None)
Traceback (most recent call last):
 ...
tt.errors.arguments.InvalidArgumentTypeError: identifier_name must be a string

definitions.operators module

Definitions for tt’s built-in Boolean operators.

	
tt.definitions.operators.BINARY_OPERATORS = {<BooleanOperator "nand">, <BooleanOperator "or">, <BooleanOperator "nor">, <BooleanOperator "impl">, <BooleanOperator "xor">, <BooleanOperator "xnor">, <BooleanOperator "and">}

	The set of all binary operators available in tt.

	Type

	Set{BooleanOperator}

	
class tt.definitions.operators.BooleanOperator(precedence, eval_func, default_symbol_str, default_plain_english_str)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A thin wrapper around a Boolean operator.

	
__init__(precedence, eval_func, default_symbol_str, default_plain_english_str)

	Initialize self. See help(type(self)) for accurate signature.

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
default_plain_english_str

	The default plain English string representation of this operator.

Unlike default_symbol_str, this attribute should never be
None.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

>>> from tt.definitions import TT_AND_OP, TT_NAND_OP
>>> print(TT_AND_OP.default_plain_english_str)
and
>>> print(TT_NAND_OP.default_plain_english_str)
nand

	
default_symbol_str

	The default symbolic string representation of this operator.

Some operators may not have a recognized symbol str, in which case
this attribute will be None.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

>>> from tt.definitions import TT_AND_OP, TT_NAND_OP
>>> print(TT_AND_OP.default_symbol_str)
/\
>>> print(TT_NAND_OP.default_symbol_str)
None

	
eval_func

	The evaluation function wrapped by this operator.

	Type

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

>>> from tt.definitions import TT_XOR_OP
>>> TT_XOR_OP.eval_func(0, 0)
False
>>> TT_XOR_OP.eval_func(True, False)
True

	
precedence

	Precedence of this operator, relative to other operators.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

>>> from tt.definitions import TT_AND_OP, TT_OR_OP
>>> TT_AND_OP.precedence > TT_OR_OP.precedence
True

	
tt.definitions.operators.MAX_OPERATOR_STR_LEN = 4

	The length of the longest operator from OPERATOR_MAPPING.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
tt.definitions.operators.NON_PRIMITIVE_OPERATORS = {<BooleanOperator "nand">, <BooleanOperator "nor">, <BooleanOperator "impl">, <BooleanOperator "xor">, <BooleanOperator "xnor">}

	The set of non-primitive operators available in tt.

This includes all binary operators other than AND and OR.

	Type

	Set{BooleanOperator}

	
tt.definitions.operators.OPERATOR_MAPPING = {'!': <BooleanOperator "not">, '&': <BooleanOperator "and">, '&&': <BooleanOperator "and">, '->': <BooleanOperator "impl">, '/\\': <BooleanOperator "and">, '<->': <BooleanOperator "xnor">, 'AND': <BooleanOperator "and">, 'IFF': <BooleanOperator "xnor">, 'IMPL': <BooleanOperator "impl">, 'NAND': <BooleanOperator "nand">, 'NOR': <BooleanOperator "nor">, 'NOT': <BooleanOperator "not">, 'NXOR': <BooleanOperator "xnor">, 'OR': <BooleanOperator "or">, 'XNOR': <BooleanOperator "xnor">, 'XOR': <BooleanOperator "xor">, '\\/': <BooleanOperator "or">, 'and': <BooleanOperator "and">, 'iff': <BooleanOperator "xnor">, 'impl': <BooleanOperator "impl">, 'nand': <BooleanOperator "nand">, 'nor': <BooleanOperator "nor">, 'not': <BooleanOperator "not">, 'nxor': <BooleanOperator "xnor">, 'or': <BooleanOperator "or">, 'xnor': <BooleanOperator "xnor">, 'xor': <BooleanOperator "xor">, '|': <BooleanOperator "or">, '||': <BooleanOperator "or">, '~': <BooleanOperator "not">}

	A mapping of all available Boolean operators.

This dictionary is the concatentation of the
PLAIN_ENGLISH_OPERATOR_MAPPING and SYMBOLIC_OPERATOR_MAPPING
dictionaries.

	Type

	Dict{str [https://docs.python.org/3/library/stdtypes.html#str]: BooleanOperator}

	
tt.definitions.operators.PLAIN_ENGLISH_OPERATOR_MAPPING = {'AND': <BooleanOperator "and">, 'IFF': <BooleanOperator "xnor">, 'IMPL': <BooleanOperator "impl">, 'NAND': <BooleanOperator "nand">, 'NOR': <BooleanOperator "nor">, 'NOT': <BooleanOperator "not">, 'NXOR': <BooleanOperator "xnor">, 'OR': <BooleanOperator "or">, 'XNOR': <BooleanOperator "xnor">, 'XOR': <BooleanOperator "xor">, 'and': <BooleanOperator "and">, 'iff': <BooleanOperator "xnor">, 'impl': <BooleanOperator "impl">, 'nand': <BooleanOperator "nand">, 'nor': <BooleanOperator "nor">, 'not': <BooleanOperator "not">, 'nxor': <BooleanOperator "xnor">, 'or': <BooleanOperator "or">, 'xnor': <BooleanOperator "xnor">, 'xor': <BooleanOperator "xor">}

	A mapping of Boolean operators.

This mapping includes the plain-English variants of the available Boolean
operators.

	Type

	Dict{str [https://docs.python.org/3/library/stdtypes.html#str]: BooleanOperator}

	
tt.definitions.operators.SYMBOLIC_OPERATOR_MAPPING = {'!': <BooleanOperator "not">, '&': <BooleanOperator "and">, '&&': <BooleanOperator "and">, '->': <BooleanOperator "impl">, '/\\': <BooleanOperator "and">, '<->': <BooleanOperator "xnor">, '\\/': <BooleanOperator "or">, '|': <BooleanOperator "or">, '||': <BooleanOperator "or">, '~': <BooleanOperator "not">}

	A mapping of Boolean operators.

This mapping includes the symbolic variants of the available Boolean
operators.

	Type

	Dict{str [https://docs.python.org/3/library/stdtypes.html#str]: BooleanOperator}

	
tt.definitions.operators.TT_AND_OP = <BooleanOperator "and">

	tt’s operator implementation of a Boolean AND.

	Type

	BooleanOperator

	
tt.definitions.operators.TT_IMPL_OP = <BooleanOperator "impl">

	tt’s operator implementation of a Boolean IMPLIES.

	Type

	BooleanOperator

	
tt.definitions.operators.TT_NAND_OP = <BooleanOperator "nand">

	tt’s operator implementation of a Boolean NAND.

	Type

	BooleanOperator

	
tt.definitions.operators.TT_NOR_OP = <BooleanOperator "nor">

	tt’s operator implementation of a Boolean NOR.

	Type

	BooleanOperator

	
tt.definitions.operators.TT_NOT_OP = <BooleanOperator "not">

	tt’s operator implementation of a Boolean NOT.

	Type

	BooleanOperator

	
tt.definitions.operators.TT_OR_OP = <BooleanOperator "or">

	tt’s operator implementation of a Boolean OR.

	Type

	BooleanOperator

	
tt.definitions.operators.TT_XNOR_OP = <BooleanOperator "xnor">

	tt’s operator implementation of a Boolean XNOR.

	Type

	BooleanOperator

	
tt.definitions.operators.TT_XOR_OP = <BooleanOperator "xor">

	tt’s operator implementation of a Boolean XOR.

	Type

	BooleanOperator

errors

tt error types.

errors.base module

The base tt exception type.

	
exception tt.errors.base.TtError(message, *args)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base exception type for tt errors. This exception type should be
sub-classed and is not meant to be raised explicitly.

	
__init__(message, *args)

	Initialize self. See help(type(self)) for accurate signature.

	
message

	A helpful message intended to be shown to the end user.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

errors.arguments module

Generic exception types.

	
exception tt.errors.arguments.ArgumentError(message, *args)

	Bases: tt.errors.base.TtError

An exception type for invalid arguments. This exception type should be
sub-classed and is not meant to be raised explicitly.

	
exception tt.errors.arguments.ConflictingArgumentsError(message, *args)

	Bases: tt.errors.arguments.ArgumentError

An exception type for two or more conflicting arguments.

This error type can be seen in action by passing both an expression and a
set of values to the TruthTable
class:

>>> from tt import TruthTable
>>> t = TruthTable('A or B', from_values='1111')
Traceback (most recent call last):
 ...
tt.errors.arguments.ConflictingArgumentsError: `expr` and `from_values` are mutually exclusive arguments

	
exception tt.errors.arguments.InvalidArgumentTypeError(message, *args)

	Bases: tt.errors.arguments.ArgumentError

An exception type for invalid argument types.

To illustrate this error type, let’s try passing an invalid argument when
creating a TruthTable:

>>> from tt import TruthTable
>>> t = TruthTable(7)
Traceback (most recent call last):
 ...
tt.errors.arguments.InvalidArgumentTypeError: Arg `expr` must be of type `str` or `BooleanExpression`

	
exception tt.errors.arguments.InvalidArgumentValueError(message, *args)

	Bases: tt.errors.arguments.ArgumentError

An exception type for invalid argument values.

Here’s an example where we pass a non-power of 2 number of values when
attempting to create a TruthTable:

>>> from tt import TruthTable
>>> t = TruthTable(from_values='01x')
Traceback (most recent call last):
 ...
tt.errors.arguments.InvalidArgumentValueError: Must specify a number of input values that is a power of 2

	
exception tt.errors.arguments.RequiredArgumentError(message, *args)

	Bases: tt.errors.arguments.ArgumentError

An exception for when a required argument is missing.

Let’s try an example where we omit all arguments when attempting to make
a new TruthTable object:

>>> from tt import TruthTable
>>> t = TruthTable()
Traceback (most recent call last):
 ...
tt.errors.arguments.RequiredArgumentError: Must specify either `expr` or `from_values`

errors.evaluation module

Exception type definitions related to expression evaluation.

	
exception tt.errors.evaluation.EvaluationError(message, *args)

	Bases: tt.errors.base.TtError

An exception type for errors occurring in expression evaluation. This
exception type should be sub-classed and is not meant to be raised
explicitly.

	
exception tt.errors.evaluation.InvalidBooleanValueError(message, *args)

	Bases: tt.errors.evaluation.EvaluationError

An exception for when an invalid truth or don’t care value is passed.

Here’s an example where we attempt to evaluate a BooleanExpression with
an invalid value passed through kwargs:

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A or B')
>>> b.evaluate(A=1, B='brian')
Traceback (most recent call last):
 ...
tt.errors.evaluation.InvalidBooleanValueError: "brian" passed as value for "B" is not a valid Boolean value

	
exception tt.errors.evaluation.NoEvaluationVariationError(message, *args)

	Bases: tt.errors.evaluation.EvaluationError

An exception type for when evaluation of an expression will not vary.

Let’s see an example where we attempt to make a TruthTable from an expression that has no
symbols nor variation in its results:

>>> from tt import TruthTable
>>> t = TruthTable('1 or 0')
Traceback (most recent call last):
 ...
tt.errors.evaluation.NoEvaluationVariationError: This expression is composed only of constant values

errors.grammar module

Exception type definitions related to expression grammar and parsing.

	
exception tt.errors.grammar.BadParenPositionError(message, expr_str=None, error_pos=None, *args)

	Bases: tt.errors.grammar.GrammarError

An exception type for unexpected parentheses.

Here’s a quick and dirty example:

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A or B (')
Traceback (most recent call last):
 ...
tt.errors.grammar.BadParenPositionError: Unexpected parenthesis

	
exception tt.errors.grammar.EmptyExpressionError(message, expr_str=None, error_pos=None, *args)

	Bases: tt.errors.grammar.GrammarError

An exception type for when an empty expression is received.

Let’s take a brief look:

>>> from tt import BooleanExpression
>>> b = BooleanExpression('')
Traceback (most recent call last):
 ...
tt.errors.grammar.EmptyExpressionError: Empty expression is invalid

	
exception tt.errors.grammar.ExpressionOrderError(message, expr_str=None, error_pos=None, *args)

	Bases: tt.errors.grammar.GrammarError

An exception type for unexpected operands or operators.

Here’s an example with an unexpected operator:

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A or or B')
Traceback (most recent call last):
 ...
tt.errors.grammar.ExpressionOrderError: Unexpected binary operator "or"

	
exception tt.errors.grammar.GrammarError(message, expr_str=None, error_pos=None, *args)

	Bases: tt.errors.base.TtError

Base type for errors that occur in the handling of expression. This
exception type should be sub-classed and is not meant to be raised
explicitly.

	
__init__(message, expr_str=None, error_pos=None, *args)

	Initialize self. See help(type(self)) for accurate signature.

	
error_pos

	The position in the expression where the error occurred.

If this property is left as None, it can be assumed that there is
no specific location in the expression causing the exception.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
expr_str

	The expression in which the exception occurred.

If this property is left as None, the expression will not be
propagated with the exception.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exception tt.errors.grammar.InvalidIdentifierError(message, expr_str=None, error_pos=None, *args)

	Bases: tt.errors.grammar.GrammarError

An exception type for invalid operand names. Invalid operand names are
determined via the is_valid_identifier function.

Here are a couple of examples, for both expressions and tables:

>>> from tt import BooleanExpression, TruthTable
>>> b = BooleanExpression('__A xor B')
Traceback (most recent call last):
 ...
tt.errors.grammar.InvalidIdentifierError: Invalid operand name "__A"
>>> t = TruthTable(from_values='0x11', ordering=['for', 'operand'])
Traceback (most recent call last):
 ...
tt.errors.grammar.InvalidIdentifierError: "for" in ordering is not a valid symbol name

	
exception tt.errors.grammar.UnbalancedParenError(message, expr_str=None, error_pos=None, *args)

	Bases: tt.errors.grammar.GrammarError

An exception type for unbalanced parentheses.

Here’s a short example:

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A or B or C)')
Traceback (most recent call last):
 ...
tt.errors.grammar.UnbalancedParenError: Unbalanced parenthesis

errors.state module

Exception type definitions related to invalid operations based on state.

	
exception tt.errors.state.AlreadyConstrainedSymbolError(message, *args)

	Bases: tt.errors.state.StateError

An exception to be raised when trying to doubly constrain a symbol.

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A or B or C')
>>> with b.constrain(C=1):
... with b.constrain(C=0):
... pass
...
Traceback (most recent call last):
tt.errors.state.AlreadyConstrainedSymbolError: Symbol "C" cannot be constrained multiple times

	
exception tt.errors.state.AlreadyFullTableError(message, *args)

	Bases: tt.errors.state.StateError

An exception to be raised when attempting to fill an already-full table.

>>> from tt import TruthTable
>>> t = TruthTable('A or B', fill_all=False)
>>> t.fill()
>>> t.is_full
True
>>> t.fill()
Traceback (most recent call last):
tt.errors.state.AlreadyFullTableError: Cannot fill an already-full table

	
exception tt.errors.state.RequiresFullTableError(message, *args)

	Bases: tt.errors.state.StateError

An exception to be raised when a full table is required.

>>> from tt import TruthTable
>>> t = TruthTable('A or B', fill_all=False)
>>> t.equivalent_to('A or B')
Traceback (most recent call last):
tt.errors.state.RequiresFullTableError: Equivalence can only be checked on full truth tables

	
exception tt.errors.state.RequiresNormalFormError(message, *args)

	Bases: tt.errors.state.StateError

An exception to be raised when expression normal form is required.

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A nand (B or C)')
>>> b.is_cnf or b.is_dnf
False
>>> for clause in b.iter_clauses():
... print(clause)
...
Traceback (most recent call last):
tt.errors.state.RequiresNormalFormError: Must be in conjunctive or disjunctive normal form to iterate clauses

	
exception tt.errors.state.StateError(message, *args)

	Bases: tt.errors.base.TtError

Base exception type for errors involving invalid state.

errors.symbols module

Exception types related to symbol processing.

	
exception tt.errors.symbols.DuplicateSymbolError(message, *args)

	Bases: tt.errors.symbols.SymbolError

An exception type for user-specified duplicate symbols.

Here’s an example where we try to pass duplicate symbols to the
ordering property of the TruthTable class:

>>> from tt import TruthTable
>>> t = TruthTable('A or B', ordering=['A', 'A', 'B'])
Traceback (most recent call last):
 ...
tt.errors.symbols.DuplicateSymbolError: Received duplicate symbols

	
exception tt.errors.symbols.ExtraSymbolError(message, *args)

	Bases: tt.errors.symbols.SymbolError

An exception for a passed token that is not a parsed symbol.

Here’s a quick table example:

>>> from tt import TruthTable
>>> t = TruthTable('A or B', ordering=['A', 'B', 'C'])
Traceback (most recent call last):
 ...
tt.errors.symbols.ExtraSymbolError: Received unexpected symbols: "C"

	
exception tt.errors.symbols.MissingSymbolError(message, *args)

	Bases: tt.errors.symbols.SymbolError

An exception type for a missing token value in evaluation.

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A and B')
>>> b.evaluate(A=1)
Traceback (most recent call last):
 ...
tt.errors.symbols.MissingSymbolError: Did not receive value for the following symbols: "B"

	
exception tt.errors.symbols.SymbolError(message, *args)

	Bases: tt.errors.base.TtError

An exception for errors occurring in symbol processing. This exception
type should be sub-classed and is not meant to be raised explicitly.

expressions

Tools for working with Boolean expressions.

expressions.bexpr module

Tools for interacting with Boolean expressions.

	
class tt.expressions.bexpr.BooleanExpression(expr)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An interface for interacting with a Boolean expression.

Instances of BooleanExpression are meant to be immutable and can be
instantiated from a few different representations of expressions. The
simplest way to make an expression object is from a string:

>>> from tt import BooleanExpression
>>> BooleanExpression('(A or B) iff (C and D)')
<BooleanExpression "(A or B) iff (C and D)">

If you already have an instance of ExpressionTreeNode laying around, you can make a
new expression object from that, too:

>>> from tt import ExpressionTreeNode
>>> tree_root = ExpressionTreeNode.build_tree(
... ['A', 'B', 'or',
... 'C', 'D', 'and',
... 'iff'])
>>> BooleanExpression(tree_root)
<BooleanExpression "(A or B) iff (C and D)">

Additionally, any sub-tree node can be used to build an expression object.
Continuing from above, let’s make a new expression object for each of the
sub-expressions wrapped in parentheses:

>>> BooleanExpression(tree_root.l_child)
<BooleanExpression "A or B">
>>> BooleanExpression(tree_root.r_child)
<BooleanExpression "C and D">

Expressions also implement the equality and inequality operators (==
and !=). Equality is determined by the same semantic structure and the
same operand names; the string used to represent the operators in two
expressions is not taken into account. Here’s a few examples:

>>> from tt import BooleanExpression as be
>>> be('A or B or C') == be('A or B or C')
True
>>> be('A or B or C') == be('A || B || C')
True
>>> be('A or B or C') == be('A or C or B')
False

	Parameters

	expr (str [https://docs.python.org/3/library/stdtypes.html#str] or ExpressionTreeNode) – The expression representation from which this object is
derived.

	Raises

	
	BadParenPositionError – If the passed expression contains a
parenthesis in an invalid position.

	EmptyExpressionError – If the passed expressions contains nothing
other than whitespace.

	ExpressionOrderError – If the expression contains invalid
consecutive operators or operands.

	InvalidArgumentTypeError – If expr is not an acceptable type.

	InvalidIdentifierError – If any parsed variable symbols in the
expression are invalid identifiers.

	UnbalancedParenError – If any parenthesis pairs remain unbalanced.

It is important to note that aside from InvalidArgumentTypeError, all exceptions raised in
expression initialization will be descendants of GrammarError.

	
__eq__(other)

	Return self==value.

	
__init__(expr)

	Initialize self. See help(type(self)) for accurate signature.

	
__ne__(other)

	Return self!=value.

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
constrain(**kwargs)

	A context manager to impose satisfiability constraints.

This is the interface for adding assumptions to the satisfiability
solving functionality provided through the sat_one() and
sat_all() methods.

It should be noted that this context manager is only designed to work
with the satisfiability-related functionality of this class.
Constrained symbol values will not have an effect on non-sat methods of
this class. For example:

>>> from tt import BooleanExpression
>>> b = BooleanExpression('(A or B) and (C or D)')
>>> with b.constrain(A=1):
... b.evaluate(A=0, B=1, C=1, D=0)
...
True

This context manager returns a reference to the same object upon which
it is called. This behavior is designed with the following use case in
mind:

>>> from tt import BooleanExpression
>>> with BooleanExpression('A or B').constrain(A=1, B=0) as b:
... b.sat_one()
...
<BooleanValues [A=1, B=0]>

	Parameters

	kwargs – Keys are names of symbols in this expression; the
specified value for each of these keys will be added to the
constraints attribute of this object for the duration of the
context manager.

	Returns

	A reference to the same object that called this method
(i.e., self in the context of this method).

	Return type

	BooleanExpression

	Raises

	
	AlreadyConstrainedSymbolError – If trying to constrain this
expression with multiple context managers.

	ExtraSymbolError – If a symbol not in this expression is passed
through kwargs.

	InvalidArgumentValueError – If no contraints are specified
(i.e., kwargs is empty).

	InvalidBooleanValueError – If any values from kwargs are not
valid Boolean inputs.

	
evaluate(**kwargs)

	Evaluate the Boolean expression for the passed keyword arguments.

This is a checked wrapper around the evaluate_unchecked()
function.

	Parameters

	kwargs – Keys are names of symbols in this expression; the
specified value for each of these keys will be substituted into the
expression for evaluation.

	Returns

	The result of evaluating the expression.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	
	ExtraSymbolError – If a symbol not in this expression is passed
through kwargs.

	MissingSymbolError – If any symbols in this expression are not
passed through kwargs.

	InvalidBooleanValueError – If any values from kwargs are not
valid Boolean inputs.

	InvalidIdentifierError – If any symbol names are invalid
identifiers.

Usage:

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A or B')
>>> b.evaluate(A=0, B=0)
False
>>> b.evaluate(A=1, B=0)
True

	
evaluate_unchecked(**kwargs)

	Evaluate the Boolean expression without checking the input.

This is used for evaluation by the evaluate() method, which
validates the input kwargs before passing them to this method.

	Parameters

	kwargs – Keys are names of symbols in this expression; the
specified value for each of these keys will be substituted into the
expression for evaluation.

	Returns

	The Boolean result of evaluating the expression.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_cnf

	Whether this expression is in conjunctive norma form or not.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

>>> from tt import BooleanExpression
>>> b = BooleanExpression('(A or ~B) and (~C or D or E) and F')
>>> b.is_cnf
True
>>> b = BooleanExpression('A nand B')
>>> b.is_cnf
False

	
is_dnf

	Whether this expression is in conjunctive normal form or not.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

>>> from tt import BooleanExpression
>>> b = BooleanExpression('(A and B) or (~C and D)')
>>> b.is_dnf
True
>>> b = BooleanExpression('(op1 or !op2) and (op3 or op4)')
>>> b.is_dnf
False

	
iter_clauses()

	Iterate over the clauses in this expression.

An expression must be in conjunctive normal form (CNF) or disjunctive
normal form (DNF) in order to iterate over its clauses. Here’s a simple
example:

>>> from tt import BooleanExpression
>>> b = BooleanExpression('(~A or B) and (C or D) and (~E or ~F)')
>>> for clause in b.iter_clauses():
... clause
...
<BooleanExpression "~A or B">
<BooleanExpression "C or D">
<BooleanExpression "~E or ~F">

In the case of an ambiguous expression form (between CNF and DNF), the
clauses will be interpreted to be in CNF form. For example:

>>> b = BooleanExpression('A and ~B and C')
>>> b.is_cnf
True
>>> b.is_dnf
True
>>> print(', '.join(str(clause) for clause in b.iter_clauses()))
A, ~B, C

If you want to enforce a specific CNF or DNF interpretation of the
clauses, take a look at iter_cnf_clauses() and
iter_dnf_clauses().

	Returns

	An iterator of expression objects, each representing a
separate clause of this expression.

	Return type

	Iterator[BooleanExpression]

	Raises

	RequiresNormalFormError – If this expression is not in
conjunctive or disjunctive normal form.

	
iter_cnf_clauses()

	Iterate over the CNF clauses in this expression.

>>> from tt import BooleanExpression
>>> b = BooleanExpression('(A or B) and ~C')
>>> for clause in b.iter_cnf_clauses():
... print(clause)
...
A or B
~C

	Returns

	An iterator of expression objects, each representing a
separate CNF clause of this expression.

	Return type

	Iterator[BooleanExpression]

	Raises

	RequiresNormalFormError – If this expression is not in
conjunctive normal form.

	
iter_dnf_clauses()

	Iterate over the DNF clauses in this expression.

>>> from tt import BooleanExpression
>>> b = BooleanExpression('(A and ~B) or (C and D and E)')
>>> for clause in b.iter_dnf_clauses():
... print(clause)
...
A and ~B
C and D and E

	Returns

	An iterator of expression objects, each representing a
separate DNF clause of this expression.

	Return type

	Iterator[BooleanExpression]

	Raises

	RequiresNormalFormError – If this expression is not in
disjunctive normal form.

	
postfix_tokens

	Similar to the tokens attribute, but in postfix order.

	Type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A xor (B or C)')
>>> b.postfix_tokens
['A', 'B', 'C', 'or', 'xor']

	
raw_expr

	The raw string expression, parsed upon initialization.

This is what you pass into the BooleanExpression constructor; it is
kept on the object as an attribute for convenience.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A nand B')
>>> b.raw_expr
'A nand B'

	
sat_all()

	Find all combinations of inputs that satisfy this expression.

Under the hood, this method is using the functionality exposed in tt’s
satisfiability.picosat module.

Here’s a simple example of iterating through a few SAT solutions:

>>> from tt import BooleanExpression
>>> b = BooleanExpression('(A xor B) and (C xor D)')
>>> for solution in b.sat_all():
... print(solution)
...
A=1, B=0, C=1, D=0
A=1, B=0, C=0, D=1
A=0, B=1, C=0, D=1
A=0, B=1, C=1, D=0

We can also constrain away a few of those solutions:

>>> with b.constrain(A=1, C=0):
... for solution in b.sat_all():
... print(solution)
...
A=1, B=0, C=0, D=1

	Returns

	An iterator of
namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]-like objects
representing satisfying combinations of inputs; if no satisfying
solutions exist, the iterator will be empty.

	Return type

	Iterator[namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]
-like objects]

	Raises

	NoEvaluationVariationError – If this is an expression of only
constants.

	
sat_one()

	Find a combination of inputs that satisfies this expression.

Under the hood, this method is using the functionality exposed in tt’s
satisfiability.picosat module.

Here’s a simple example of satisfying an expression:

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A xor 1')
>>> b.sat_one()
<BooleanValues [A=0]>

Don’t forget about the utility provided by the constrain()
context manager:

>>> b = BooleanExpression('(A nand B) iff C')
>>> with b.constrain(A=1, C=1):
... b.sat_one()
...
<BooleanValues [A=1, B=0, C=1]>

Finally, here’s an example when the expression cannot be satisfied:

>>> with BooleanExpression('A xor 1').constrain(A=1) as b:
... b.sat_one() is None
...
True

	Returns

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]-like
object representing a satisfying set of values (see
boolean_variables_factory for more
information about the type of object returned); None
will be returned if no satisfiable set of inputs exists.

	Return type

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]-like object
or None

	Raises

	NoEvaluationVariationError – If this is an expression of only
constants.

	
symbols

	The list of unique symbols present in this expression.

The order of the symbols in this list matches the order of symbol
appearance in the original expression.

	Type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A xor (B or C)')
>>> b.symbols
['A', 'B', 'C']

	
tokens

	The parsed, non-whitespace tokens of an expression.

	Type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A xor (B or C)')
>>> b.tokens
['A', 'xor', '(', 'B', 'or', 'C', ')']

	
tree

	The tree node representing the root of the tree of this expression.

	Type

	ExpressionTreeNode

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A xor (B or C)')
>>> print(b.tree)
xor
`----A
`----or
 `----B
 `----C

satisfiability

Functionality for determining logic satisfiasbility.

satisfiability.picosat module

Python wrapper around the _clibs PicoSAT extension.

	
tt.satisfiability.picosat.sat_all(clauses, assumptions=None)

	Find all solutions that satisfy the specified clauses and assumptions.

This provides a light Python wrapper around the same method in the PicoSAT
C-extension. While completely tested and usable, this method is probably
not as useful as the interface provided through the
sat_all method in
the BooleanExpression
class.

	Parameters

	
	clauses (List[List[int [https://docs.python.org/3/library/functions.html#int]]]) – CNF (AND of ORs) clauses; positive integers represent
non-negated terms and negative integers represent negated terms.

	assumptions (List[int [https://docs.python.org/3/library/functions.html#int]]) – Assumed terms; same negation logic from clauses
applies here. Note that assumptions cannot be an empty list; leave it
as None if there are no assumptions to include.

	Returns

	An iterator of solutions; if no satisfiable solutions exist, the
iterator will be empty.

	Return type

	Iterator[List[int [https://docs.python.org/3/library/functions.html#int]]]

	Raises

	
	InvalidArgumentTypeError – If clauses is not a list of lists of
ints or assumptions is not a list of ints.

	InvalidArgumentValueError – If any literal ints are equal to zero.

Here’s an example showing the basic usage:

>>> from tt import picosat
>>> for solution in picosat.sat_all([[1], [2, 3, 4], [2, 3]]):
... print(solution)
...
[1, 2, 3, 4]
[1, 2, 3, -4]
[1, 2, -3, 4]
[1, 2, -3, -4]
[1, -2, 3, 4]
[1, -2, 3, -4]

We can cut down on some of the above solutions by including an assumption:

>>> for solution in picosat.sat_all([[1], [2, 3, 4], [2, 3]],
... assumptions=[-3]):
... print(solution)
...
[1, 2, -3, 4]
[1, 2, -3, -4]

	
tt.satisfiability.picosat.sat_one(clauses, assumptions=None)

	Find a solution that satisfies the specified clauses and assumptions.

This provides a light Python wrapper around the same method in the PicoSAT
C-extension. While completely tested and usable, this method is probably
not as useful as the interface provided through the
sat_one method in
the BooleanExpression
class.

	Parameters

	
	clauses (List[List[int [https://docs.python.org/3/library/functions.html#int]]]) – CNF (AND of ORs) clauses; positive integers represent
non-negated terms and negative integers represent negated terms.

	assumptions (List[int [https://docs.python.org/3/library/functions.html#int]]) – Assumed terms; same negation logic from clauses
applies here. Note that assumptions cannot be an empty list; leave it
as None if there are no assumptions to include.

	Returns

	If solution is found, a list of ints representing the terms of
the solution; otherwise, if no solution found, None.

	Return type

	List[int [https://docs.python.org/3/library/functions.html#int]] or None

	Raises

	
	InvalidArgumentTypeError – If clauses is not a list of lists of
ints or assumptions is not a list of ints.

	InvalidArgumentValueError – If any literal ints are equal to zero.

Let’s look at a simple example with no satisfiable solution:

>>> from tt import picosat
>>> picosat.sat_one([[1], [-1]]) is None
True

Here’s an example where a solution exists:

>>> picosat.sat_one([[1, 2, 3], [-2, -3], [1, -2], [2, -3], [-2]])
[1, -2, -3]

Finally, here’s an example using assumptions:

>>> picosat.sat_one([[1, 2, 3], [2, 3]], assumptions=[-1, -3])
[-1, 2, -3]

tables

Tools for working with truth tables.

tables.truth_table module

Implementation of a truth table.

	
class tt.tables.truth_table.TruthTable(expr=None, from_values=None, fill_all=True, ordering=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class representing a truth table.

There are two ways to fill a table: either populated from an expression or
by specifying the values yourself.

An existing BooleanExpression
expression can be used, or you can just pass in a string:

>>> from tt import TruthTable
>>> t = TruthTable('A xor B')
>>> print(t)
+---+---+---+
| A | B | |
+---+---+---+
| 0 | 0 | 0 |
+---+---+---+
| 0 | 1 | 1 |
+---+---+---+
| 1 | 0 | 1 |
+---+---+---+
| 1 | 1 | 0 |
+---+---+---+

When manually specifying the values tt can generate the symbols for you:

>>> from tt import TruthTable
>>> t = TruthTable(from_values='0110')
>>> print(t)
+---+---+---+
| A | B | |
+---+---+---+
| 0 | 0 | 0 |
+---+---+---+
| 0 | 1 | 1 |
+---+---+---+
| 1 | 0 | 1 |
+---+---+---+
| 1 | 1 | 0 |
+---+---+---+

You can also specify the symbol names yourself, if you’d like:

>>> from tt import TruthTable
>>> t = TruthTable(from_values='0110', ordering=['tt', 'rocks'])
>>> print(t)
+----+-------+---+
| tt | rocks | |
+----+-------+---+
| 0 | 0 | 0 |
+----+-------+---+
| 0 | 1 | 1 |
+----+-------+---+
| 1 | 0 | 1 |
+----+-------+---+
| 1 | 1 | 0 |
+----+-------+---+

	Parameters

	
	expr (str [https://docs.python.org/3/library/stdtypes.html#str] or BooleanExpression) – The expression with which to populate this truth table. If
this argument is omitted, then the from_values argument must be
properly set.

	from_values (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string of 1’s, 0’s, and x’s representing the values
to be stored in the table; the length of this string must be a power
of 2 and is the complete set of values (in sequential order) to be
stored in table.

	fill_all (bool [https://docs.python.org/3/library/functions.html#bool], optional) – A flag indicating whether the entirety of the table should
be filled on initialization; defaults to True.

	ordering (List[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – An input that maps to this class’s ordering
property. If omitted, the ordering of symbols in the table will match
that of the symbols’ appearance in the original expression.

	Raises

	
	ConflictingArgumentsError – If both expr and from_values are
specified in the initalization; a table can only be instantiated from
one or the other.

	DuplicateSymbolError – If multiple symbols of the same name are
passed into the ordering list.

	ExtraSymbolError – If a symbol not present in the expression is
passed into the ordering list.

	MissingSymbolError – If a symbol present in the expression is
omitted from the ordering list.

	InvalidArgumentTypeError – If an unexpected parameter type is
encountered.

	InvalidArgumentValueError – If the number of values specified via
from_values is not a power of 2 or the ordering list (when
filling the table using from_values) is empty.

	InvalidIdentifierError – If any symbol names specified in
ordering are not valid identifiers.

	NoEvaluationVariationError – If an expression without any unqiue
symbols (i.e., one merely composed of constant operands) is specified.

	RequiredArgumentError – If neither the expr or from_values
arguments are specified.

	
__init__(expr=None, from_values=None, fill_all=True, ordering=None)

	Initialize self. See help(type(self)) for accurate signature.

	
__str__()

	Return str(self).

	
equivalent_to(other)

	Return whether this table is equivalent to another source of truth.

	Parameters

	other (TruthTable, str [https://docs.python.org/3/library/stdtypes.html#str], or
BooleanExpression) – The other source of truth with which to compare logical
equivalence.

	Returns

	True if the other expression is logically equivalent to this
one, otherwise False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	
	InvalidArgumentTypeError – If the other argument is not one
of the acceptable types.

	RequiresFullTableError – If either the calling table or other
source of truth represents an unfilled table.

It is important to note that the concept of equivalence employed here
is only concerned with the corresponding outputs between this table
and the other provided source of truth. For example, the ordering of
symbols is not taken into consideration when computing equivalence:

>>> from tt import TruthTable
>>> t1 = TruthTable('op1 or op2')
>>> t2 = TruthTable('A or B')
>>> t1.equivalent_to(t2)
True
>>> t2.equivalent_to(t1)
True

Another area of possible ambiguity here is the role of the don’t care
value in equivalence. When comparing tables, don’t cares in the caller
will allow for any corresponding value in other, but the reverse is
not true. For example:

>>> from tt import TruthTable
>>> t1 = TruthTable(from_values='0x11')
>>> t2 = TruthTable(from_values='0011')
>>> t1.equivalent_to(t2)
True
>>> t2.equivalent_to(t1)
False

Additionally, only full tables are valid for equivalence checks. The
appropriate error will be raised if you attempt to check the
equivalence of partially filled tables:

>>> from tt import TruthTable
>>> t = TruthTable('A or B', fill_all=False)
>>> t.fill(A=0)
>>> try:
... t.equivalent_to('A or B')
... except Exception as e:
... print(type(e))
...
<class 'tt.errors.state.RequiresFullTableError'>

	
expr

	The BooleanExpression object represented by this table.

This attribute will be None if this table was not derived from
an expression (i.e., the user provided the values).

	Type

	BooleanExpression

	
fill(**kwargs)

	Fill the table with results, based on values specified by kwargs.

	Parameters

	kwargs – Filter which entries in the table are filled by
specifying symbol values through the keyword args.

	Raises

	
	AlreadyFullTableError – If the table is already full when this
method is called.

	ExtraSymbolError – If a symbol not in the expression is passed
as a keyword arg.

	InvalidBooleanValueError – If a non-Boolean value is passed
as a value for one of the keyword args.

An example of iteratively filling a table:

>>> from tt import TruthTable
>>> t = TruthTable('A or B', fill_all=False)
>>> print(t)
Empty!
>>> t.fill(A=0)
>>> print(t)
+---+---+---+
| A | B | |
+---+---+---+
| 0 | 0 | 0 |
+---+---+---+
| 0 | 1 | 1 |
+---+---+---+
>>> t.fill(A=1)
>>> print(t)
+---+---+---+
| A | B | |
+---+---+---+
| 0 | 0 | 0 |
+---+---+---+
| 0 | 1 | 1 |
+---+---+---+
| 1 | 0 | 1 |
+---+---+---+
| 1 | 1 | 1 |
+---+---+---+

	
static generate_symbols(num_symbols)

	Generate a list of symbols for a specified number of symbols.

Generated symbol names are permutations of a properly-sized number
of uppercase alphabet letters.

	Parameters

	num_symbols (int [https://docs.python.org/3/library/functions.html#int]) – The number of symbols to generate.

	Returns

	A list of strings of length num_symbols, containing
auto-generated symbols.

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

A simple example:

>>> from tt import TruthTable
>>> TruthTable.generate_symbols(3)
['A', 'B', 'C']
>>> TruthTable.generate_symbols(7)
['A', 'B', 'C', 'D', 'E', 'F', 'G']

	
static input_combos(combo_len)

	Get an iterator of Boolean input combinations for this expression.

	Parameters

	combo_len (int [https://docs.python.org/3/library/functions.html#int], optional) – The length of each combination in the returned
iterator.

	Returns

	An iterator of tuples containing permutations of Boolean
inputs.

	Return type

	itertools.product [https://docs.python.org/3/library/itertools.html#itertools.product]

A simple example:

>>> from tt import TruthTable
>>> for tup in TruthTable.input_combos(2):
... print(tup)
...
(False, False)
(False, True)
(True, False)
(True, True)

	
is_full

	A Boolean flag indicating whether this table is full or not.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

Attempting to further fill an already-full table will raise an
AlreadyFullTableError:

>>> from tt import TruthTable
>>> t = TruthTable('A or B', fill_all=False)
>>> t.is_full
False
>>> t.fill()
>>> t.is_full
True
>>> try:
... t.fill()
... except Exception as e:
... print(type(e))
...
<class 'tt.errors.state.AlreadyFullTableError'>

	
ordering

	The order in which the symbols should appear in the truth table.

	Type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

Here’s a short example of alternative orderings of a partially-filled,
three-symbol table:

>>> from tt import TruthTable
>>> t = TruthTable('(A or B) and C', fill_all=False)
>>> t.fill(A=0, B=0)
>>> print(t)
+---+---+---+---+
| A | B | C | |
+---+---+---+---+
| 0 | 0 | 0 | 0 |
+---+---+---+---+
| 0 | 0 | 1 | 0 |
+---+---+---+---+
>>> t = TruthTable('(A or B) and C',
... fill_all=False, ordering=['C', 'B', 'A'])
>>> t.fill(A=0, B=0)
>>> print(t)
+---+---+---+---+
| C | B | A | |
+---+---+---+---+
| 0 | 0 | 0 | 0 |
+---+---+---+---+
| 1 | 0 | 0 | 0 |
+---+---+---+---+

	
results

	A list containing the results of each possible set of inputs.

	Type

	List[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]

In the case that the table is not completely filled, spots in this list
that do not yet have a computed result will hold the None value.

Regardless of the filled status of this table, all
positions in the results list are allocated at initialization and
subsequently filled as computed. This is illustrated in the below
example:

>>> from tt import TruthTable
>>> t = TruthTable('A or B', fill_all=False)
>>> t.results
[None, None, None, None]
>>> t.fill(A=0)
>>> t.results
[False, True, None, None]
>>> t.fill()
>>> t.results
[False, True, True, True]

If the table is filled upon initialization via the from_values
parameter, don’t care strings could be present in the result list:

>>> from tt import TruthTable
>>> t = TruthTable(from_values='1xx0')
>>> t.results
[True, 'x', 'x', False]

transformations

Interfaces for transforming representations of expressions.

transformations.bexpr module

Transformation functions for expressions.

	
tt.transformations.bexpr.apply_de_morgans(expr)

	Convert an expression to a form with De Morgan’s Law applied.

	Returns

	A new expression object, transformed so that De Morgan’s Law has
been applied to negated ANDs and ORs.

	Return type

	BooleanExpression

	Raises

	InvalidArgumentTypeError – If expr is not a valid type.

Here’s a couple of simple examples showing De Morgan’s Law being applied
to a negated AND and a negated OR:

>>> from tt import apply_de_morgans
>>> apply_de_morgans('~(A /\ B)')
<BooleanExpression "~A \/ ~B">
>>> apply_de_morgans('~(A \/ B)')
<BooleanExpression "~A /\ ~B">

	
tt.transformations.bexpr.apply_idempotent_law(expr)

	Convert an expression to a form with the Idempotent Law applied.

	Returns

	A new expression object, transformed so that the Idempotent Law
has been applied to applicable clauses.

	Return type

	BooleanExpression

	Raises

	InvalidArgumentTypeError – If expr is not a valid data type.

This transformation will apply the Idempotent Law to clauses of AND and
OR operators containing redundant operands. Here are a couple of simple
examples:

>>> from tt import apply_idempotent_law
>>> apply_idempotent_law('A and A')
<BooleanExpression "A">
>>> apply_idempotent_law('B or B')
<BooleanExpression "B">

This transformation will consider similarly-negated operands to be
redundant; for example:

>>> from tt import apply_idempotent_law
>>> apply_idempotent_law('~A and ~~~A')
<BooleanExpression "~A">
>>> apply_idempotent_law('B or ~B or ~~B or ~~~B or ~~~~B or ~~~~~B')
<BooleanExpression "B or ~B">

Let’s also take a quick look at this transformation’s ability to prune
redundant operands from CNF and DNF clauses:

>>> from tt import apply_idempotent_law
>>> apply_idempotent_law('(A and B and C and C and B) or (A and A)')
<BooleanExpression "(A and B and C) or A">

Of important note is that this transformation will not recursively apply
the Idempotent Law to operands that bubble up. Here’s an example
illustrating this case:

>>> from tt import apply_idempotent_law
>>> apply_idempotent_law('(A or A) and (A or A)')
<BooleanExpression "A and A">

	
tt.transformations.bexpr.apply_identity_law(expr)

	Convert an expression to a form with the Identity Law applied.

It should be noted that this transformation will also annihilate terms
when possible. One such case where this would be applicable is the
expression A and 0, which would be transformed to the constant value
0.

	Returns

	A new expression object, transformed so that the Identity Law
has been applied to applicable ANDs and ORs.

	Return type

	BooleanExpression

	Raises

	InvalidArgumentTypeError – If expr is not a valid type.

Here are a few simple examples showing the behavior of this transformation
across all two-operand scenarios:

>>> from tt import apply_identity_law
>>> apply_identity_law('A and 1')
<BooleanExpression "A">
>>> apply_identity_law('A and 0')
<BooleanExpression "0">
>>> apply_identity_law('A or 0')
<BooleanExpression "A">
>>> apply_identity_law('A or 1')
<BooleanExpression "1">

	
tt.transformations.bexpr.apply_inverse_law(expr)

	Convert an expression to a form with the Inverse Law applied.

	Returns

	A new expression object, transformed so that the Inverse Law
has been applied to applicable ANDs and ORs.

	Return type

	BooleanExpression

	Raises

	InvalidArgumentTypeError – If expr is not a valid type.

This transformation will apply the Identity Law to simple binary
expressions consisting of negated and non-negated forms of the same
operand. Let’s take a look:

>>> from tt.transformations import apply_inverse_law
>>> apply_inverse_law('A and ~A')
<BooleanExpression "0">
>>> apply_inverse_law('A or B or ~B or C')
<BooleanExpression "1">

This transformation will also apply the behavior expected of the Inverse
Law when negated and non-negated forms of the same operand appear in the
same CNF or DNF clause in an expression:

>>> from tt.transformations import apply_inverse_law
>>> apply_inverse_law('(A or B or ~A) -> (C and ~C)')
<BooleanExpression "1 -> 0">
>>> apply_inverse_law('(A or !!!A) xor (not C or not not C)')
<BooleanExpression "1 xor 1">

	
tt.transformations.bexpr.coalesce_negations(expr)

	Convert an expression to a form with all negations condensed.

	Returns

	A new expression object, transformed so that all “runs” of
logical NOTs are condensed into the minimal equivalent number.

	Return type

	BooleanExpression

	Raises

	InvalidArgumentTypeError – If expr is not a valid type.

Here’s a simple example showing the basic premise of this transformation:

>>> from tt import coalesce_negations
>>> coalesce_negations('~~A or ~B or ~~~C or ~~~~D')
<BooleanExpression "A or ~B or ~C or D">

This transformation works on more complex expressions, too:

>>> coalesce_negations('!!(A -> not not B) or ~(~(A xor B))')
<BooleanExpression "(A -> B) or (A xor B)">

It should be noted that this transformation will also apply negations
to constant operands, as well. The behavior for this functionality is as
follows:

>>> coalesce_negations('~0')
<BooleanExpression "1">
>>> coalesce_negations('~1')
<BooleanExpression "0">
>>> coalesce_negations('~~~0 -> ~1 -> not 1')
<BooleanExpression "1 -> 0 -> 0">

	
tt.transformations.bexpr.distribute_ands(expr)

	Convert an expression to distribute ANDs over ORed clauses.

	Parameters

	expr (str [https://docs.python.org/3/library/stdtypes.html#str] or BooleanExpression) – The expression to transform.

	Returns

	A new expression object, transformed to distribute ANDs over ORed
clauses.

	Return type

	BooleanExpression

	Raises

	InvalidArgumentTypeError – If expr is not a valid type.

Here’s a couple of simple examples:

>>> from tt import distribute_ands
>>> distribute_ands('A and (B or C or D)')
<BooleanExpression "(A and B) or (A and C) or (A and D)">
>>> distribute_ands('(A or B) and C')
<BooleanExpression "(A and C) or (B and C)">

And an example involving distributing a sub-expression:

>>> distribute_ands('(A and B) and (C or D or E)')
<BooleanExpression "(A and B and C) or (A and B and D) or (A and B and E)">

	
tt.transformations.bexpr.distribute_ors(expr)

	Convert an expression to distribute ORs over ANDed clauses.

	Parameters

	expr (str [https://docs.python.org/3/library/stdtypes.html#str] or BooleanExpression) – The expression to transform.

	Returns

	A new expression object, transformed to distribute ORs over ANDed
clauses.

	Return type

	BooleanExpression

	Raises

	InvalidArgumentTypeError – If expr is not a valid type.

Here’s a couple of simple examples:

>>> from tt import distribute_ors
>>> distribute_ors('A or (B and C and D and E)')
<BooleanExpression "(A or B) and (A or C) and (A or D) and (A or E)">
>>> distribute_ors('(A and B) or C')
<BooleanExpression "(A or C) and (B or C)">

And an example involving distributing a sub-expression:

>>> distribute_ors('(A or B) or (C and D)')
<BooleanExpression "(A or B or C) and (A or B or D)">

	
tt.transformations.bexpr.to_cnf(expr)

	Convert an expression to conjunctive normal form (CNF).

This transformation only guarantees to produce an equivalent form of the
passed expression in conjunctive normal form; the transformed expression
may be an inefficent representation of the passed expression.

	Parameters

	expr (str [https://docs.python.org/3/library/stdtypes.html#str] or BooleanExpression) – The expression to transform.

	Returns

	A new expression object, transformed to be in CNF.

	Return type

	BooleanExpression

	Raises

	InvalidArgumentTypeError – If expr is not a valid type.

Here are a few examples:

>>> from tt import to_cnf
>>> b = to_cnf('(A nor B) impl C')
>>> b
<BooleanExpression "A or B or C">
>>> b.is_cnf
True
>>> b = to_cnf(r'~(~(A /\ B) /\ C /\ D)')
>>> b
<BooleanExpression "(A \/ ~C \/ ~D) /\ (B \/ ~C \/ ~D)">
>>> b.is_cnf
True

	
tt.transformations.bexpr.to_primitives(expr)

	Convert an expression to a form with only primitive operators.

All operators will be transformed equivalent form composed only of the
logical AND, OR,and NOT operators. Symbolic operators in the passed
expression will remain symbolic in the transformed expression and the same
applies for plain English operators.

	Parameters

	expr (str [https://docs.python.org/3/library/stdtypes.html#str] or BooleanExpression) – The expression to transform.

	Returns

	A new expression object, transformed to contain only primitive
operators.

	Return type

	BooleanExpression

	Raises

	InvalidArgumentTypeError – If expr is not a valid type.

Here’s a simple transformation of exclusive-or:

>>> from tt import to_primitives
>>> to_primitives('A xor B')
<BooleanExpression "(A and not B) or (not A and B)">

And another example of if-and-only-if (using symbolic operators):

>>> to_primitives('A <-> B')
<BooleanExpression "(A /\ B) \/ (~A /\ ~B)">

transformations.utils module

Utilities for building more complex transformations.

	
class tt.transformations.utils.ComposedTransformation(fn, next_transformation=None, times=1)

	Bases: tt.transformations.utils.RepeatableAction

An encapsulation of composed transformation functions.

This class opens up a world of functionality consisting of buildable (i.e.,
composed) transformation functions. While instances of this class will work
when manually initialized by the user, it will likely be easier to compose
functions using the tt_compose() method from this module.

Transformation functions, held within the fn attribute of this class,
are intended to be pure functions that both receive and produce an instance
of BooleanExpression.

When called, instances of this class will repeatedly apply the fn
callable to the passed argument. The repeated application of the fn
callable will continue until either the specified number of times is
met or the callable produces no change to the expression during the
transformation.

Let’s take a look at a simple example, where all we do is compose two
fairly basic transformations:

>>> from tt import coalesce_negations, to_primitives, tt_compose
>>> f = tt_compose(to_primitives, coalesce_negations)
>>> f
<ComposedTransformation [to_primitives -> coalesce_negations]>
>>> to_primitives('~A <-> ~B')
<BooleanExpression "(~A /\ ~B) \/ (~~A /\ ~~B)">
>>> f('~A <-> ~B')
<BooleanExpression "(~A /\ ~B) \/ (A /\ B)">

This fairly simple example gives us an idea of how to compose functions
using the tt_compose() helper. A few operators make manual
composition of instances of this class a little more intuitive, too. Let’s
take a look at how we would make the same composition from above using the
>> operator:

>>> from tt import ComposedTransformation
>>> one = ComposedTransformation(to_primitives)
>>> two = ComposedTransformation(coalesce_negations)
>>> one >> two
<ComposedTransformation [to_primitives -> coalesce_negations]>

The >> and << operators shown above are just shallow wrappers
around the core compose function.

It is important to note that instances of this class are immutable and
hashable; consequently, they support == and != equality checks.
We can see this by continuing our example from above:

>>> three = ComposedTransformation(to_primitives)
>>> one == two
False
>>> one == three
True
>>> two == three
False

The hash of instances of this class is computed at initialization and never
updated, so meddling with ComposedTransformation instances will likely
have unintended consequences for you.

	Parameters

	
	fn (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – The callable transformation function wrapped by this class.

	next_transformation (ComposedTransformation) – The next transformation in the constructed
composed sequence of transformation functions.

	times (Typically an int [https://docs.python.org/3/library/functions.html#int]) – The number of times the wrapped function is to be repeatedly
applied to its passed argument when called.

	Raises

	
	InvalidArgumentTypeError – If the passed fn argument is not
a callable.

	InvalidArgumentValueError – If times is not valid, as per the
RepeatableAction initialization logic.

	
__call__(expr)

	Call self as a function.

	
__eq__(other)

	Return self==value.

	
__hash__()

	Return hash(self).

	
__init__(fn, next_transformation=None, times=1)

	Initialize self. See help(type(self)) for accurate signature.

	
__ne__(other)

	Return self!=value.

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
compose(other)

	Compose this transformation with another.

	Parameters

	other (A Callable [https://docs.python.org/3/library/typing.html#typing.Callable], instance of
ComposedTransformation, or instance of
AbstractTransformationModifier.) – The callable transformation function, composed
transformation object, or modifier object to either be composed
with or modify this object.

	Returns

	A new composed transformation instance, with the intended
composition or modification applied.

	Return type

	ComposedTransformation

	Raises

	InvalidArgumentType – If the other argument is not of an
expected type.

	
fn

	The callable transformation function that this class wraps.

This callable should both accept as an argument and produce as its
result an instance of the BooleanExpression class.

	Type

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

>>> from tt import tt_compose, apply_de_morgans, twice
>>> f = tt_compose(apply_de_morgans, twice)
>>> f.fn.__name__
'apply_de_morgans'

	
next_transformation

	The next transformation that this object’s result will be passed to.

The next transformation function in the chain of composed functions. A
value of None indicates that this is the last function in the
composition.

	Type

	ComposedTransformation

	
class tt.transformations.utils.RepeatableAction(times=1)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A mixin for describing actions that can be repeated.

This class is meant to be used as a mixin when simple access to a times
attribute is needed, presumably to perform some action or task multiple
times. Here’s a simple look at the class:

>>> from tt import RepeatableAction
>>> r = RepeatableAction(5)
>>> print(r)
5 times
>>> r
<RepeatableAction [5 times]>
>>> r.times
5

The passed times argument to this class must be a value that implements
__lt__ that is not less than 1. Here’s an example:

>>> r = RepeatableAction(-1)
Traceback (most recent call last):
 ...
tt.errors.arguments.InvalidArgumentValueError: `times` must be at least 1

Instances of RepeatableAction are immutable, hashable, and
implement all rich comparison operators. Let’s take a look:

>>> r1, r2 = RepeatableAction(3), RepeatableAction(4)
>>> hash(r1)
3
>>> hash(r2)
4
>>> r1 < r2
True
>>> r1 == r2
False
>>> r1 > r2
False
>>> r3 = RepeatableAction(4)
>>> r2 == r3
True

	Parameters

	times (Typically an int [https://docs.python.org/3/library/functions.html#int]) – The number of times that this action would be repeated when
executed.

	Raises

	InvalidArgumentValueError – If times is less than 1.

	
__eq__(other)

	Return self==value.

	
__hash__()

	Return hash(self).

	
__init__(times=1)

	Initialize self. See help(type(self)) for accurate signature.

	
__lt__(other)

	Return self<value.

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
times

	The number of times the action is to be repeated.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

>>> from tt import RepeatableAction
>>> r = RepeatableAction(3)
>>> r.times
3
>>> r = RepeatableAction(float('inf'))
>>> r.times
inf

	
tt.transformations.utils.ensure_bexpr(expr)

	Return an expression object or raise an InvalidArgumentTypeError.

	Parameters

	expr (BooleanExpression or str [https://docs.python.org/3/library/stdtypes.html#str]) – The expression whose type is being checked.

	Raises

	InvalidArgumentTypeError – If expr is not of a valid type.

	
tt.transformations.utils.forever = <RepeatableAction [inf times]>

	A repeating modifier to perform a transformation forever.

	Type

	repeat

	
class tt.transformations.utils.repeat(times)

	Bases: tt.transformations.utils.AbstractTransformationModifier, tt.transformations.utils.RepeatableAction

Factory for a repeating transformation modifier.

This factory method is largely meant to provide repeating modifier for the
tt_compose() function. As an example, let’s compose a transformation
that will be applied 7 times to expressions passed to it:

>>> from tt import tt_compose, coalesce_negations, repeat
>>> tt_compose(coalesce_negations, repeat(7))
<ComposedTransformation [coalesce_negations (7 times)]>

Check out the twice and forever modifiers for some pre-made
utilities that may come in handy.

	
__init__(times)

	Initialize self. See help(type(self)) for accurate signature.

	
modify(other)

	Modify a transformation composition or other modifier.

This method must be implemented by descendants of this class.

	Parameters

	other (ComposedTransformation or
AbstractTransformationModifier) – A transformation composition or

	Returns

	A modified composition or modifier.

	Return type

	The same type as other

	
tt.transformations.utils.tt_compose(*fns)

	Compose multiple transformations into a new callable transformation.

This function will compose multiple transformations and transformation
modifiers into a single callable. When called, this new transformation will
apply the composition to generate a transformed expression.

	Parameters

	fns (Callable [https://docs.python.org/3/library/typing.html#typing.Callable],
ComposedTransformation, or
AbstractTransformationModifier) – A sequence of callable transformation functions or
transformation modifiers from which a single composed transformation
will be constructed.

	Returns

	The callable composition of all functions in fn, which will
return a BooleanExpression object when called.

	Return type

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	Raises

	
	InvalidArgumentTypeError – If a modifier is ordered incorrectly or
a non-callable function is included in the sequence.

	InvalidArgumentValueError – If an insufficient number of arguments
is provided (must be at least 2).

Let’s say we wanted a transformation that would first convert all operators
in our expression to their equivalent primitive form, and then apply De
Morgan’s Law twice:

>>> from tt.transformations import *
>>> f = tt_compose(
... to_primitives,
... apply_de_morgans, twice
...)
>>> f
<ComposedTransformation [to_primitives -> apply_de_morgans (2 times)]>
>>> f('~A <-> ~B')
<BooleanExpression "(~A /\ ~B) \/ (~~A /\ ~~B)">

Composed transformations can be nested, too. Let’s add some functionality
to our composed transformation so that all redundant negations are
coalesced:

>>> g = tt_compose(f, coalesce_negations)
>>> g
<ComposedTransformation [to_primitives -> apply_de_morgans (2 times) -> coalesce_negations]>
>>> g('~A <-> ~B')
<BooleanExpression "(~A /\ ~B) \/ (A /\ B)">

	
tt.transformations.utils.twice = <RepeatableAction [2 times]>

	A repeating modifier to perform a transformation twice.

	Type

	repeat

trees

Tools for working with Boolean expression trees.

It should be noted that virtually all of the functionality within this module
is presented with an easier-to-use interface in the expressions module.

trees.tree_node module

A node, and related classes, for use in expression trees.

	
class tt.trees.tree_node.BinaryOperatorExpressionTreeNode(operator_str, l_child, r_child)

	Bases: tt.trees.tree_node.ExpressionTreeNode

An expression tree node for binary operators.

	
__eq__(other)

	Return self==value.

	
__init__(operator_str, l_child, r_child)

	Initialize self. See help(type(self)) for accurate signature.

	
apply_de_morgans()

	Return a transformed node, with De Morgan’s Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all negated AND and OR operators
transformed, following De Morgan’s Law.

	Return type

	ExpressionTreeNode

	
apply_idempotent_law()

	Returns a transformed node, with the Idempotent Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects

	Returns

	An expression tree node with the Idempotent Law applied to
AND and OR operators.

	Return type

	ExpressionTreeNode

This transformation will apply the Idempotent Law to AND and OR
expressions involving repeated operands. Here are a few examples:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and A').tree
>>> print(tree.apply_idempotent_law())
A
>>> tree = BooleanExpression('~B or ~~~B').tree
>>> print(tree.apply_idempotent_law())
~
`----B

In the latter of the two above examples, we see that this
transformation will compare operands with negations condensed. This
transformation will also prune redundant operands from CNF and DNF
clauses. Let’s take a look:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and B and B and C and ~C and ~~C and D').tree
>>> print(tree.apply_idempotent_law())
and
`----and
| `----and
| | `----and
| | | `----A
| | | `----B
| | `----C
| `----~
| `----C
`----D

	
apply_identity_law()

	Return a transformed node, with the Identity Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

This transformation will achieve the following effects by applying the
Inverse Law to the AND and OR operators:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and 1').tree
>>> print(tree.apply_identity_law())
A
>>> tree = BooleanExpression('0 or B').tree
>>> print(tree.apply_identity_law())
B

It should also be noted that this transformation will also apply
the annihilator properties of the logical AND and OR operators. For
example:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and 0').tree
>>> print(tree.apply_identity_law())
0
>>> tree = BooleanExpression('1 or B').tree
>>> print(tree.apply_identity_law())
1

	Returns

	An expression tree node with AND and OR identities
simplified.

	Return type

	ExpressionTreeNode

	
apply_inverse_law()

	Return a transformed node, with the Inverse Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with the Inverse Law applied to
applicable clauses.

	Return type

	ExpressionTreeNode

This transformation will apply the Inverse Law to AND and OR
expressions involving the negated and non-negated forms of a variable.
Here are a few examples:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('~A and A').tree
>>> print(tree.apply_inverse_law())
0
>>> tree = BooleanExpression('B or !B').tree
>>> print(tree.apply_inverse_law())
1

Note that this transformation will not reduce expressions of
constants; the transformation apply_identity_law will
probably do what you want in this case, though.

This transformation will also reduce expressions in CNF or DNF that
contain negated and non-negated forms of the same symbol. Let’s take a
look:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A or B or C or ~B').tree
>>> print(tree.apply_inverse_law())
1
>>> tree = BooleanExpression('A and B and C and !B').tree
>>> print(tree.apply_inverse_law())
0

	
coalesce_negations()

	Return a transformed node, with consecutive negations coalesced.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all consecutive negations
compressed into the minimal number of equivalent negations (either
one or none).

	Return type

	ExpressionTreeNode

	
distribute_ands()

	Return a transformed nodes, with ANDs recursively distributed across
ORed sub-expressions.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all applicable AND operators
distributed across ORed sub-expressions.

	Return type

	ExpressionTreeNode

	
distribute_ors()

	Return a transformed nodes, with ORs recursively distributed across
ANDed sub-expressions.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all applicable OR operators
distributed across ANDed sub-expressions.

	Return type

	ExpressionTreeNode

	
evaluate(input_dict)

	Recursively evaluate this node.

This is an interface that should be defined in sub-classes. Node
evaluation does no checking of the validity of inputs; they should be
check before being passed here.

	Parameters

	input_dict (Dict{str [https://docs.python.org/3/library/stdtypes.html#str]: truthy) – A dictionary mapping expression symbols to the value
for which they should be subsituted in expression evaluation.

	Returns

	The evaluation of the tree rooted at this node.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
operator

	The actual operator object wrapped in this node.

	Type

	BooleanOperator

	
to_primitives()

	Return a transformed node, containing only NOTs, ANDs, and ORs.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all operators transformed to
consist only of NOTs, ANDs, and ORs.

	Return type

	ExpressionTreeNode

	
class tt.trees.tree_node.ExpressionTreeNode(symbol_name, l_child=None, r_child=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A base class for expression tree nodes.

This class is extended within tt and is not meant to be used
directly.

If you plan to extend it, note that descendants of this class
must compute the _is_cnf, _is_dnf, and _is_really_unary boolean
attributes and the _non_negated_symbol_set and _negated_symbol_set
set attributes within their initialization. Additionally, descendants of
this class must implemented the __eq__ magic method (but not
__ne__) as well as the private _copy transformation.

	
__eq__(other)

	Return self==value.

	
__init__(symbol_name, l_child=None, r_child=None)

	Initialize self. See help(type(self)) for accurate signature.

	
__ne__(other)

	Return self!=value.

	
__str__()

	Return str(self).

	
apply_de_morgans()

	Return a transformed node, with De Morgan’s Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all negated AND and OR operators
transformed, following De Morgan’s Law.

	Return type

	ExpressionTreeNode

	
apply_idempotent_law()

	Returns a transformed node, with the Idempotent Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects

	Returns

	An expression tree node with the Idempotent Law applied to
AND and OR operators.

	Return type

	ExpressionTreeNode

This transformation will apply the Idempotent Law to AND and OR
expressions involving repeated operands. Here are a few examples:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and A').tree
>>> print(tree.apply_idempotent_law())
A
>>> tree = BooleanExpression('~B or ~~~B').tree
>>> print(tree.apply_idempotent_law())
~
`----B

In the latter of the two above examples, we see that this
transformation will compare operands with negations condensed. This
transformation will also prune redundant operands from CNF and DNF
clauses. Let’s take a look:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and B and B and C and ~C and ~~C and D').tree
>>> print(tree.apply_idempotent_law())
and
`----and
| `----and
| | `----and
| | | `----A
| | | `----B
| | `----C
| `----~
| `----C
`----D

	
apply_identity_law()

	Return a transformed node, with the Identity Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

This transformation will achieve the following effects by applying the
Inverse Law to the AND and OR operators:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and 1').tree
>>> print(tree.apply_identity_law())
A
>>> tree = BooleanExpression('0 or B').tree
>>> print(tree.apply_identity_law())
B

It should also be noted that this transformation will also apply
the annihilator properties of the logical AND and OR operators. For
example:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and 0').tree
>>> print(tree.apply_identity_law())
0
>>> tree = BooleanExpression('1 or B').tree
>>> print(tree.apply_identity_law())
1

	Returns

	An expression tree node with AND and OR identities
simplified.

	Return type

	ExpressionTreeNode

	
apply_inverse_law()

	Return a transformed node, with the Inverse Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with the Inverse Law applied to
applicable clauses.

	Return type

	ExpressionTreeNode

This transformation will apply the Inverse Law to AND and OR
expressions involving the negated and non-negated forms of a variable.
Here are a few examples:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('~A and A').tree
>>> print(tree.apply_inverse_law())
0
>>> tree = BooleanExpression('B or !B').tree
>>> print(tree.apply_inverse_law())
1

Note that this transformation will not reduce expressions of
constants; the transformation apply_identity_law will
probably do what you want in this case, though.

This transformation will also reduce expressions in CNF or DNF that
contain negated and non-negated forms of the same symbol. Let’s take a
look:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A or B or C or ~B').tree
>>> print(tree.apply_inverse_law())
1
>>> tree = BooleanExpression('A and B and C and !B').tree
>>> print(tree.apply_inverse_law())
0

	
static build_tree(postfix_tokens)

	Build a tree from a list of expression tokens in postfix order.

This method does not check that the tokens are indeed in postfix order;
undefined behavior will ensue if you pass tokens in an order other than
postfix.

	Parameters

	postfix_tokens (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of string tokens from which to construct
the tree of expression nodes.

	Returns

	The root node of the constructed tree.

	Return type

	ExpressionTreeNode

	Raises

	
	InvalidArgumentTypeError – If postfix_tokens is not a list
of strings.

	InvalidArgumentValueError – If postfix_tokens is empty.

	
coalesce_negations()

	Return a transformed node, with consecutive negations coalesced.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all consecutive negations
compressed into the minimal number of equivalent negations (either
one or none).

	Return type

	ExpressionTreeNode

	
distribute_ands()

	Return a transformed nodes, with ANDs recursively distributed across
ORed sub-expressions.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all applicable AND operators
distributed across ORed sub-expressions.

	Return type

	ExpressionTreeNode

	
distribute_ors()

	Return a transformed nodes, with ORs recursively distributed across
ANDed sub-expressions.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all applicable OR operators
distributed across ANDed sub-expressions.

	Return type

	ExpressionTreeNode

	
evaluate(input_dict)

	Recursively evaluate this node.

This is an interface that should be defined in sub-classes. Node
evaluation does no checking of the validity of inputs; they should be
check before being passed here.

	Parameters

	input_dict (Dict{str [https://docs.python.org/3/library/stdtypes.html#str]: truthy) – A dictionary mapping expression symbols to the value
for which they should be subsituted in expression evaluation.

	Returns

	The evaluation of the tree rooted at this node.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_cnf

	Whether the tree rooted at this node is in conjunctive normal form.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_dnf

	Whether the tree rooted at this node is in disjunctive normal form.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_really_unary

	Whether the tree rooted at this node contains no binary operators.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
iter_clauses()

	Iterate the clauses in the expression tree rooted at this node.

If the normal form of the expression is ambiguous, then precedence will
be given to conjunctive normal form.

	Returns

	Iterator of each CNF or DNF clause, rooted by a tree node,
contained within the expression tree rooted at this node.

	Return type

	Iterator[ExpressionTreeNode]

	Raises

	RequiresNormalFormError – If this expression is not in
conjunctive or disjunctive normal form.

	
iter_cnf_clauses()

	Iterate the clauses in conjunctive normal form order.

	Returns

	Iterator of each CNF clause, rooted by a tree node, contained
within the expression tree rooted at this node.

	Return type

	Iterator[ExpressionTreeNode]

	Raises

	RequiresNormalFormError – If the expression tree rooted at this
node is not in conjunctive normal form.

	
iter_dnf_clauses()

	Iterate the clauses in disjunctive normal form order.

	Returns

	Iterator of each DNF clause, rooted by a tree node, contained
within the expression tree rooted at this node.

	Return type

	Iterator[ExpressionTreeNode]

	Raises

	RequiresNormalFormError – If the expression tree rooted at this
node is not in disjunctive normal form.

	
l_child

	This node’s left child; None indicates the absence of a child.

	Type

	ExpressionTreeNode or None

	
negated_symbol_set

	A set of the negated symbols present in the tree rooted here.

	Type

	Set[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
non_negated_symbol_set

	A set of the non-negated symbols present in the tree rooted here.

	Type

	Set[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
r_child

	This node’s left child; None indicates the absence of a child.

	Type

	ExpressionTreeNode or None

	
symbol_name

	The string operator/operand name wrapped in this node.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
to_cnf()

	Return a transformed node, in conjunctive normal form.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all operators transformed to
consist only of NOTs, ANDs, and ORs.

	Return type

	ExpressionTreeNode

	
to_primitives()

	Return a transformed node, containing only NOTs, ANDs, and ORs.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all operators transformed to
consist only of NOTs, ANDs, and ORs.

	Return type

	ExpressionTreeNode

	
class tt.trees.tree_node.OperandExpressionTreeNode(operand_str)

	Bases: tt.trees.tree_node.ExpressionTreeNode

An expression tree node for operands.

Nodes of this type will always be leaves in an expression tree.

	
__eq__(other)

	Return self==value.

	
__init__(operand_str)

	Initialize self. See help(type(self)) for accurate signature.

	
apply_de_morgans()

	Return a transformed node, with De Morgan’s Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all negated AND and OR operators
transformed, following De Morgan’s Law.

	Return type

	ExpressionTreeNode

	
apply_idempotent_law()

	Returns a transformed node, with the Idempotent Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects

	Returns

	An expression tree node with the Idempotent Law applied to
AND and OR operators.

	Return type

	ExpressionTreeNode

This transformation will apply the Idempotent Law to AND and OR
expressions involving repeated operands. Here are a few examples:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and A').tree
>>> print(tree.apply_idempotent_law())
A
>>> tree = BooleanExpression('~B or ~~~B').tree
>>> print(tree.apply_idempotent_law())
~
`----B

In the latter of the two above examples, we see that this
transformation will compare operands with negations condensed. This
transformation will also prune redundant operands from CNF and DNF
clauses. Let’s take a look:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and B and B and C and ~C and ~~C and D').tree
>>> print(tree.apply_idempotent_law())
and
`----and
| `----and
| | `----and
| | | `----A
| | | `----B
| | `----C
| `----~
| `----C
`----D

	
apply_identity_law()

	Return a transformed node, with the Identity Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

This transformation will achieve the following effects by applying the
Inverse Law to the AND and OR operators:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and 1').tree
>>> print(tree.apply_identity_law())
A
>>> tree = BooleanExpression('0 or B').tree
>>> print(tree.apply_identity_law())
B

It should also be noted that this transformation will also apply
the annihilator properties of the logical AND and OR operators. For
example:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and 0').tree
>>> print(tree.apply_identity_law())
0
>>> tree = BooleanExpression('1 or B').tree
>>> print(tree.apply_identity_law())
1

	Returns

	An expression tree node with AND and OR identities
simplified.

	Return type

	ExpressionTreeNode

	
apply_inverse_law()

	Return a transformed node, with the Inverse Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with the Inverse Law applied to
applicable clauses.

	Return type

	ExpressionTreeNode

This transformation will apply the Inverse Law to AND and OR
expressions involving the negated and non-negated forms of a variable.
Here are a few examples:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('~A and A').tree
>>> print(tree.apply_inverse_law())
0
>>> tree = BooleanExpression('B or !B').tree
>>> print(tree.apply_inverse_law())
1

Note that this transformation will not reduce expressions of
constants; the transformation apply_identity_law will
probably do what you want in this case, though.

This transformation will also reduce expressions in CNF or DNF that
contain negated and non-negated forms of the same symbol. Let’s take a
look:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A or B or C or ~B').tree
>>> print(tree.apply_inverse_law())
1
>>> tree = BooleanExpression('A and B and C and !B').tree
>>> print(tree.apply_inverse_law())
0

	
coalesce_negations()

	Return a transformed node, with consecutive negations coalesced.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all consecutive negations
compressed into the minimal number of equivalent negations (either
one or none).

	Return type

	ExpressionTreeNode

	
distribute_ands()

	Return a transformed nodes, with ANDs recursively distributed across
ORed sub-expressions.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all applicable AND operators
distributed across ORed sub-expressions.

	Return type

	ExpressionTreeNode

	
distribute_ors()

	Return a transformed nodes, with ORs recursively distributed across
ANDed sub-expressions.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all applicable OR operators
distributed across ANDed sub-expressions.

	Return type

	ExpressionTreeNode

	
evaluate(input_dict)

	Recursively evaluate this node.

This is an interface that should be defined in sub-classes. Node
evaluation does no checking of the validity of inputs; they should be
check before being passed here.

	Parameters

	input_dict (Dict{str [https://docs.python.org/3/library/stdtypes.html#str]: truthy) – A dictionary mapping expression symbols to the value
for which they should be subsituted in expression evaluation.

	Returns

	The evaluation of the tree rooted at this node.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
to_primitives()

	Return a transformed node, containing only NOTs, ANDs, and ORs.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all operators transformed to
consist only of NOTs, ANDs, and ORs.

	Return type

	ExpressionTreeNode

	
class tt.trees.tree_node.UnaryOperatorExpressionTreeNode(operator_str, l_child)

	Bases: tt.trees.tree_node.ExpressionTreeNode

An expression tree node for unary operators.

	
__eq__(other)

	Return self==value.

	
__init__(operator_str, l_child)

	Initialize self. See help(type(self)) for accurate signature.

	
apply_de_morgans()

	Return a transformed node, with De Morgan’s Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all negated AND and OR operators
transformed, following De Morgan’s Law.

	Return type

	ExpressionTreeNode

	
apply_idempotent_law()

	Returns a transformed node, with the Idempotent Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects

	Returns

	An expression tree node with the Idempotent Law applied to
AND and OR operators.

	Return type

	ExpressionTreeNode

This transformation will apply the Idempotent Law to AND and OR
expressions involving repeated operands. Here are a few examples:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and A').tree
>>> print(tree.apply_idempotent_law())
A
>>> tree = BooleanExpression('~B or ~~~B').tree
>>> print(tree.apply_idempotent_law())
~
`----B

In the latter of the two above examples, we see that this
transformation will compare operands with negations condensed. This
transformation will also prune redundant operands from CNF and DNF
clauses. Let’s take a look:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and B and B and C and ~C and ~~C and D').tree
>>> print(tree.apply_idempotent_law())
and
`----and
| `----and
| | `----and
| | | `----A
| | | `----B
| | `----C
| `----~
| `----C
`----D

	
apply_identity_law()

	Return a transformed node, with the Identity Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

This transformation will achieve the following effects by applying the
Inverse Law to the AND and OR operators:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and 1').tree
>>> print(tree.apply_identity_law())
A
>>> tree = BooleanExpression('0 or B').tree
>>> print(tree.apply_identity_law())
B

It should also be noted that this transformation will also apply
the annihilator properties of the logical AND and OR operators. For
example:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A and 0').tree
>>> print(tree.apply_identity_law())
0
>>> tree = BooleanExpression('1 or B').tree
>>> print(tree.apply_identity_law())
1

	Returns

	An expression tree node with AND and OR identities
simplified.

	Return type

	ExpressionTreeNode

	
apply_inverse_law()

	Return a transformed node, with the Inverse Law applied.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with the Inverse Law applied to
applicable clauses.

	Return type

	ExpressionTreeNode

This transformation will apply the Inverse Law to AND and OR
expressions involving the negated and non-negated forms of a variable.
Here are a few examples:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('~A and A').tree
>>> print(tree.apply_inverse_law())
0
>>> tree = BooleanExpression('B or !B').tree
>>> print(tree.apply_inverse_law())
1

Note that this transformation will not reduce expressions of
constants; the transformation apply_identity_law will
probably do what you want in this case, though.

This transformation will also reduce expressions in CNF or DNF that
contain negated and non-negated forms of the same symbol. Let’s take a
look:

>>> from tt import BooleanExpression
>>> tree = BooleanExpression('A or B or C or ~B').tree
>>> print(tree.apply_inverse_law())
1
>>> tree = BooleanExpression('A and B and C and !B').tree
>>> print(tree.apply_inverse_law())
0

	
coalesce_negations()

	Return a transformed node, with consecutive negations coalesced.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all consecutive negations
compressed into the minimal number of equivalent negations (either
one or none).

	Return type

	ExpressionTreeNode

	
distribute_ands()

	Return a transformed nodes, with ANDs recursively distributed across
ORed sub-expressions.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all applicable AND operators
distributed across ORed sub-expressions.

	Return type

	ExpressionTreeNode

	
distribute_ors()

	Return a transformed nodes, with ORs recursively distributed across
ANDed sub-expressions.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all applicable OR operators
distributed across ANDed sub-expressions.

	Return type

	ExpressionTreeNode

	
evaluate(input_dict)

	Recursively evaluate this node.

This is an interface that should be defined in sub-classes. Node
evaluation does no checking of the validity of inputs; they should be
check before being passed here.

	Parameters

	input_dict (Dict{str [https://docs.python.org/3/library/stdtypes.html#str]: truthy) – A dictionary mapping expression symbols to the value
for which they should be subsituted in expression evaluation.

	Returns

	The evaluation of the tree rooted at this node.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
operator

	The actual operator object wrapped in this node.

	Type

	BooleanOperator

	
to_primitives()

	Return a transformed node, containing only NOTs, ANDs, and ORs.

Since nodes are immutable, the returned node, and all descendants, are
new objects.

	Returns

	An expression tree node with all operators transformed to
consist only of NOTs, ANDs, and ORs.

	Return type

	ExpressionTreeNode

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tt	

 	
 	
 tt.cli	

 	
 	
 tt.cli.core	

 	
 	
 tt.cli.utils	

 	
 	
 tt.definitions	

 	
 	
 tt.definitions.grammar	

 	
 	
 tt.definitions.operands	

 	
 	
 tt.definitions.operators	

 	
 	
 tt.errors	

 	
 	
 tt.errors.arguments	

 	
 	
 tt.errors.base	

 	
 	
 tt.errors.evaluation	

 	
 	
 tt.errors.grammar	

 	
 	
 tt.errors.state	

 	
 	
 tt.errors.symbols	

 	
 	
 tt.expressions	

 	
 	
 tt.expressions.bexpr	

 	
 	
 tt.satisfiability	

 	
 	
 tt.satisfiability.picosat	

 	
 	
 tt.tables	

 	
 	
 tt.tables.truth_table	

 	
 	
 tt.transformations	

 	
 	
 tt.transformations.bexpr	

 	
 	
 tt.transformations.utils	

 	
 	
 tt.trees	

 	
 	
 tt.trees.tree_node	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

_

 	
 	__call__() (tt.transformations.utils.ComposedTransformation method)

 	__eq__() (tt.expressions.bexpr.BooleanExpression method)

 	(tt.transformations.utils.ComposedTransformation method)

 	(tt.transformations.utils.RepeatableAction method)

 	(tt.trees.tree_node.BinaryOperatorExpressionTreeNode method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	(tt.trees.tree_node.OperandExpressionTreeNode method)

 	(tt.trees.tree_node.UnaryOperatorExpressionTreeNode method)

 	__hash__() (tt.transformations.utils.ComposedTransformation method)

 	(tt.transformations.utils.RepeatableAction method)

 	__init__() (tt.definitions.operators.BooleanOperator method)

 	(tt.errors.base.TtError method)

 	(tt.errors.grammar.GrammarError method)

 	(tt.expressions.bexpr.BooleanExpression method)

 	(tt.tables.truth_table.TruthTable method)

 	(tt.transformations.utils.ComposedTransformation method)

 	(tt.transformations.utils.RepeatableAction method)

 	(tt.transformations.utils.repeat method)

 	(tt.trees.tree_node.BinaryOperatorExpressionTreeNode method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	(tt.trees.tree_node.OperandExpressionTreeNode method)

 	(tt.trees.tree_node.UnaryOperatorExpressionTreeNode method)

 	
 	__lt__() (tt.transformations.utils.RepeatableAction method)

 	__ne__() (tt.expressions.bexpr.BooleanExpression method)

 	(tt.transformations.utils.ComposedTransformation method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	__repr__() (tt.definitions.operators.BooleanOperator method)

 	(tt.expressions.bexpr.BooleanExpression method)

 	(tt.transformations.utils.ComposedTransformation method)

 	(tt.transformations.utils.RepeatableAction method)

 	__str__() (tt.definitions.operators.BooleanOperator method)

 	(tt.expressions.bexpr.BooleanExpression method)

 	(tt.tables.truth_table.TruthTable method)

 	(tt.transformations.utils.ComposedTransformation method)

 	(tt.transformations.utils.RepeatableAction method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

A

 	
 	AlreadyConstrainedSymbolError

 	AlreadyFullTableError

 	apply_de_morgans() (in module tt.transformations.bexpr)

 	(tt.trees.tree_node.BinaryOperatorExpressionTreeNode method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	(tt.trees.tree_node.OperandExpressionTreeNode method)

 	(tt.trees.tree_node.UnaryOperatorExpressionTreeNode method)

 	apply_idempotent_law() (in module tt.transformations.bexpr)

 	(tt.trees.tree_node.BinaryOperatorExpressionTreeNode method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	(tt.trees.tree_node.OperandExpressionTreeNode method)

 	(tt.trees.tree_node.UnaryOperatorExpressionTreeNode method)

 	
 	apply_identity_law() (in module tt.transformations.bexpr)

 	(tt.trees.tree_node.BinaryOperatorExpressionTreeNode method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	(tt.trees.tree_node.OperandExpressionTreeNode method)

 	(tt.trees.tree_node.UnaryOperatorExpressionTreeNode method)

 	apply_inverse_law() (in module tt.transformations.bexpr)

 	(tt.trees.tree_node.BinaryOperatorExpressionTreeNode method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	(tt.trees.tree_node.OperandExpressionTreeNode method)

 	(tt.trees.tree_node.UnaryOperatorExpressionTreeNode method)

 	ArgumentError

B

 	
 	BadParenPositionError

 	BINARY_OPERATORS (in module tt.definitions.operators)

 	BinaryOperatorExpressionTreeNode (class in tt.trees.tree_node)

 	BOOLEAN_VALUES (in module tt.definitions.operands)

 	
 	boolean_variables_factory() (in module tt.definitions.operands)

 	BooleanExpression (class in tt.expressions.bexpr)

 	BooleanOperator (class in tt.definitions.operators)

 	build_tree() (tt.trees.tree_node.ExpressionTreeNode static method)

C

 	
 	coalesce_negations() (in module tt.transformations.bexpr)

 	(tt.trees.tree_node.BinaryOperatorExpressionTreeNode method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	(tt.trees.tree_node.OperandExpressionTreeNode method)

 	(tt.trees.tree_node.UnaryOperatorExpressionTreeNode method)

 	
 	compose() (tt.transformations.utils.ComposedTransformation method)

 	ComposedTransformation (class in tt.transformations.utils)

 	ConflictingArgumentsError

 	CONSTANT_VALUES (in module tt.definitions.grammar)

 	constrain() (tt.expressions.bexpr.BooleanExpression method)

D

 	
 	default_plain_english_str (tt.definitions.operators.BooleanOperator attribute)

 	default_symbol_str (tt.definitions.operators.BooleanOperator attribute)

 	DELIMITERS (in module tt.definitions.grammar)

 	distribute_ands() (in module tt.transformations.bexpr)

 	(tt.trees.tree_node.BinaryOperatorExpressionTreeNode method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	(tt.trees.tree_node.OperandExpressionTreeNode method)

 	(tt.trees.tree_node.UnaryOperatorExpressionTreeNode method)

 	
 	distribute_ors() (in module tt.transformations.bexpr)

 	(tt.trees.tree_node.BinaryOperatorExpressionTreeNode method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	(tt.trees.tree_node.OperandExpressionTreeNode method)

 	(tt.trees.tree_node.UnaryOperatorExpressionTreeNode method)

 	DONT_CARE_VALUE (in module tt.definitions.operands)

 	DuplicateSymbolError

E

 	
 	EmptyExpressionError

 	ensure_bexpr() (in module tt.transformations.utils)

 	equivalent_to() (tt.tables.truth_table.TruthTable method)

 	error_pos (tt.errors.grammar.GrammarError attribute)

 	eval_func (tt.definitions.operators.BooleanOperator attribute)

 	evaluate() (tt.expressions.bexpr.BooleanExpression method)

 	(tt.trees.tree_node.BinaryOperatorExpressionTreeNode method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	(tt.trees.tree_node.OperandExpressionTreeNode method)

 	(tt.trees.tree_node.UnaryOperatorExpressionTreeNode method)

 	
 	evaluate_unchecked() (tt.expressions.bexpr.BooleanExpression method)

 	EvaluationError

 	expr (tt.tables.truth_table.TruthTable attribute)

 	expr_str (tt.errors.grammar.GrammarError attribute)

 	ExpressionOrderError

 	ExpressionTreeNode (class in tt.trees.tree_node)

 	ExtraSymbolError

F

 	
 	fill() (tt.tables.truth_table.TruthTable method)

 	
 	fn (tt.transformations.utils.ComposedTransformation attribute)

 	forever (in module tt.transformations.utils)

G

 	
 	generate_symbols() (tt.tables.truth_table.TruthTable static method)

 	
 	get_parsed_args() (in module tt.cli.core)

 	GrammarError

I

 	
 	input_combos() (tt.tables.truth_table.TruthTable static method)

 	InvalidArgumentTypeError

 	InvalidArgumentValueError

 	InvalidBooleanValueError

 	InvalidIdentifierError

 	is_cnf (tt.expressions.bexpr.BooleanExpression attribute)

 	(tt.trees.tree_node.ExpressionTreeNode attribute)

 	is_dnf (tt.expressions.bexpr.BooleanExpression attribute)

 	(tt.trees.tree_node.ExpressionTreeNode attribute)

 	
 	is_full (tt.tables.truth_table.TruthTable attribute)

 	is_really_unary (tt.trees.tree_node.ExpressionTreeNode attribute)

 	is_valid_identifier() (in module tt.definitions.operands)

 	iter_clauses() (tt.expressions.bexpr.BooleanExpression method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	iter_cnf_clauses() (tt.expressions.bexpr.BooleanExpression method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	iter_dnf_clauses() (tt.expressions.bexpr.BooleanExpression method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

L

 	
 	l_child (tt.trees.tree_node.ExpressionTreeNode attribute)

M

 	
 	main() (in module tt.cli.core)

 	MAX_OPERATOR_STR_LEN (in module tt.definitions.operators)

 	
 	message (tt.errors.base.TtError attribute)

 	MissingSymbolError

 	modify() (tt.transformations.utils.repeat method)

N

 	
 	negated_symbol_set (tt.trees.tree_node.ExpressionTreeNode attribute)

 	next_transformation (tt.transformations.utils.ComposedTransformation attribute)

 	
 	NoEvaluationVariationError

 	non_negated_symbol_set (tt.trees.tree_node.ExpressionTreeNode attribute)

 	NON_PRIMITIVE_OPERATORS (in module tt.definitions.operators)

O

 	
 	OperandExpressionTreeNode (class in tt.trees.tree_node)

 	operator (tt.trees.tree_node.BinaryOperatorExpressionTreeNode attribute)

 	(tt.trees.tree_node.UnaryOperatorExpressionTreeNode attribute)

 	
 	OPERATOR_MAPPING (in module tt.definitions.operators)

 	ordering (tt.tables.truth_table.TruthTable attribute)

P

 	
 	PLAIN_ENGLISH_OPERATOR_MAPPING (in module tt.definitions.operators)

 	postfix_tokens (tt.expressions.bexpr.BooleanExpression attribute)

 	
 	precedence (tt.definitions.operators.BooleanOperator attribute)

 	print_err() (in module tt.cli.utils)

 	print_info() (in module tt.cli.utils)

R

 	
 	r_child (tt.trees.tree_node.ExpressionTreeNode attribute)

 	raw_expr (tt.expressions.bexpr.BooleanExpression attribute)

 	repeat (class in tt.transformations.utils)

 	RepeatableAction (class in tt.transformations.utils)

 	
 	RequiredArgumentError

 	RequiresFullTableError

 	RequiresNormalFormError

 	results (tt.tables.truth_table.TruthTable attribute)

S

 	
 	sat_all() (in module tt.satisfiability.picosat)

 	(tt.expressions.bexpr.BooleanExpression method)

 	sat_one() (in module tt.satisfiability.picosat)

 	(tt.expressions.bexpr.BooleanExpression method)

 	
 	StateError

 	symbol_name (tt.trees.tree_node.ExpressionTreeNode attribute)

 	SymbolError

 	SYMBOLIC_OPERATOR_MAPPING (in module tt.definitions.operators)

 	symbols (tt.expressions.bexpr.BooleanExpression attribute)

T

 	
 	times (tt.transformations.utils.RepeatableAction attribute)

 	to_cnf() (in module tt.transformations.bexpr)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	to_primitives() (in module tt.transformations.bexpr)

 	(tt.trees.tree_node.BinaryOperatorExpressionTreeNode method)

 	(tt.trees.tree_node.ExpressionTreeNode method)

 	(tt.trees.tree_node.OperandExpressionTreeNode method)

 	(tt.trees.tree_node.UnaryOperatorExpressionTreeNode method)

 	tokens (tt.expressions.bexpr.BooleanExpression attribute)

 	tree (tt.expressions.bexpr.BooleanExpression attribute)

 	TruthTable (class in tt.tables.truth_table)

 	tt.cli (module)

 	tt.cli.core (module)

 	tt.cli.utils (module)

 	tt.definitions (module)

 	tt.definitions.grammar (module)

 	tt.definitions.operands (module)

 	tt.definitions.operators (module)

 	tt.errors (module)

 	tt.errors.arguments (module)

 	tt.errors.base (module)

 	tt.errors.evaluation (module)

 	tt.errors.grammar (module)

 	
 	tt.errors.state (module)

 	tt.errors.symbols (module)

 	tt.expressions (module)

 	tt.expressions.bexpr (module)

 	tt.satisfiability (module)

 	tt.satisfiability.picosat (module)

 	tt.tables (module)

 	tt.tables.truth_table (module)

 	tt.transformations (module)

 	tt.transformations.bexpr (module)

 	tt.transformations.utils (module)

 	tt.trees (module)

 	tt.trees.tree_node (module)

 	TT_AND_OP (in module tt.definitions.operators)

 	tt_compose() (in module tt.transformations.utils)

 	TT_IMPL_OP (in module tt.definitions.operators)

 	TT_NAND_OP (in module tt.definitions.operators)

 	TT_NOR_OP (in module tt.definitions.operators)

 	TT_NOT_OP (in module tt.definitions.operators)

 	TT_OR_OP (in module tt.definitions.operators)

 	TT_XNOR_OP (in module tt.definitions.operators)

 	TT_XOR_OP (in module tt.definitions.operators)

 	TtError

 	twice (in module tt.transformations.utils)

U

 	
 	UnaryOperatorExpressionTreeNode (class in tt.trees.tree_node)

 	
 	UnbalancedParenError

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 tt: logical tools for logic

 		
 cli

 		
 cli.core module

 		
 cli.utils module

 		
 definitions

 		
 definitions.grammar module

 		
 definitions.operands module

 		
 definitions.operators module

 		
 errors

 		
 errors.base module

 		
 errors.arguments module

 		
 errors.evaluation module

 		
 errors.grammar module

 		
 errors.state module

 		
 errors.symbols module

 		
 expressions

 		
 expressions.bexpr module

 		
 satisfiability

 		
 satisfiability.picosat module

 		
 tables

 		
 tables.truth_table module

 		
 transformations

 		
 transformations.bexpr module

 		
 transformations.utils module

 		
 trees

 		
 trees.tree_node module

_static/file.png

_static/logo.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

